An Expository Introduction to Matroid Theory

Levi Segal

Abstract

This paper gives an expository introduction to matroid theory. Beginning with
Whitney’s foundational 1935 definition [I], we develop the independent-set axioms,
equivalent formulations via bases, circuits, rank functions, and duality [3, 2]. We then
explain how graph theory fits naturally into matroid theory through the graphic and
cographic matroids. Next, we present the greedy algorithm theorem, following classical
proofs from Welsh and Oxley [2] [3]. Finally, we describe modern applications involving
representability, the Tutte polynomial [4], and geometric developments [5].
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1 Introduction and Motivation

Matroid theory originates in Hassler Whitney’s 1935 paper On the Abstract Properties of
Linear Dependence [1], where he observed that the fundamental structure of linear indepen-
dence in vector spaces and acyclic edge sets in graphs could both be captured by the same
axioms.

This idea was expanded systematically in the later classical treatments of Welsh [2] and
Oxley [3], who established the modern foundational framework. In both linear algebra and
graph theory, we observe common concepts:

e independent sets,

e maximal independent sets (bases),

minimal dependent sets (circuits),

rank functions,

e and natural duality operations.

Uniting these common combinatorial properties is one of the central motivations of ma-
troid theory [3].

2 Axiomatic Foundations of Matroids

2.1 Independent-set axioms

The following is Whitney’s original definition of a matroid in terms of independent sets [1]:
Definition 2.1 (Whitney 1935). A matroid is a pair M = (E,T) with E finite and Z C 2F
satisfying:

(I1) ¥ e 7,

(I2) if I eZ and J C [ then J €7,

(I3) if I, J € T with |I| < |J|, then there exists e € J \ I such that I U {e} € Z.

This axiomatizes the pattern observed in linear independence and in forests of graphs.

2.2 Examples

Ezxample 2.2 (Vector Matroid). Let E be a set of vectors in a vector space over a field F.
The independent sets are the linearly independent subsets. Whitney already recognized this
as one of the motivating examples [I], and it forms the backbone of modern representability
theory [3].

Ezample 2.3 (Graphic Matroid). For a graph G = (V, E), let Z be all subsets of edges that
contain no cycle. This definition appears implicitly in Whitney’s work and explicitly in later
formalizations [2], 3]. Circuits in this matroid are exactly graph cycles.

Ezample 2.4 (Uniform Matroid). The uniform matroid U, ,,—where independent sets are all
subsets of size < r— is one of the simplest examples [3].
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3 Fundamental Concepts: Bases, Circuits, Rank, and
Duality

3.1 Bases

Welsh’s and Oxley’s treatments emphasize that basis theory provides a complete axiomati-
zation of matroids [2] 3.

Definition 3.1. A basis of a matroid M is a maximal independent set.

Theorem 3.2 (Basis Exchange; Welsh-Oxley). All bases of a matroid have the same cardi-
nality [2, [3].

3.2 Circuits

Definition 3.3. A circuit is a minimal dependent set.

The circuit-elimination axiom giving an equivalent matroid definition is due to early work
of Whitney and later formalized in detail by Tutte and Welsh [4, 2].

3.3 Rank function

The rank function was introduced by Whitney [I] and developed fully in modern expositions
such as Oxley [3].

Definition 3.4. r(A) =max{|I|: I C A, I € T}.

Proposition 3.5 (Whitney’s Submodularity). The rank function of a matroid is submodular

(.

3.4 Duality

The dual matroid M* was formalized systematically by Tutte [4] and has become a funda-
mental tool in all modern treatments [3] 2].

Definition 3.6. The dual matroid M* has bases E \ B where B ranges over the bases of
M.

Graphic/cographic duality was one of the original motivations for Tutte’s work in the
1950s [4].

Ezxample 3.7 (Computing Rank, Circuits, and Bases). Let F = {a,b,c,d} and define inde-
pendence by declaring
IT={ICE:|I|<2}.

This is the uniform matroid Us 4.
Rank function: For any X C F,

r(X) = min(|X|, 2).
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Circuits: The minimal dependent sets are the 3-element subsets, e.g.,

{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}.

Bases: Every maximal independent set has size 2, so

B = {{a,b},{a,c},{a,d},{b,c},{b,d},{c,d}}.

This example concretely demonstrates how rank, circuits, and bases operate within the
axioms of a matroid.

Equivalent Axiom Systems

For completeness, we record here the standard equivalent ways to define a matroid in terms
of bases, circuits, and rank functions; see, for example, Welsh and Oxley [2] 3]. Each of the
following axiom systems determines a unique matroid structure.

Definition 3.8 (Matroid via bases). Let E be a finite set and let B be a nonempty collection
of subsets of E. We say that (E, B) is a matroid specified by bases if:

(B1) All sets in B have the same finite cardinality.

(B2) (Basis exchange) For any By, Bs € B and any « € B; \ By, there exists y € By \ By
such that

(Bi —{z})U{y} € B.

The sets in B are called the bases. The independent sets are precisely the subsets of bases,
and this recovers an independent-set matroid in the sense of Whitney [1].

Definition 3.9 (Matroid via circuits). Let E be a finite set and let C be a collection of
nonempty subsets of . We say that (E,C) is a matroid specified by circuits if:

(C1) No member of C properly contains another member of C.

(C2) (Circuit elimination) If C,Cy € C with C; # Cy and e € C; N Cy, then there exists a
circuit C3 € C such that
C5 C (C1UGy) \ {e}.

A subset I C FE' is declared independent if it does not contain any member of C; then (E,Z)

is a matroid in the independent-set sense, and C is exactly the set of circuits of that matroid
21 13].

Definition 3.10 (Matroid via rank function). Let E be a finite set and let r : 2¥ — Z+( be
a function. We say that (E,r) is a matroid specified by rank if r satisfies:

(R1) 0 <r(X) <|X|forall X C E.
(R2) If X CY C E, then r(X) < r(Y).



(R3) (Submodularity) For all X,Y C E,

r(X)+rY)>r(XUY)+r(XNY).

A set I C E is declared independent if r(I) = |I|; with this notion of independence, (E,Z)
is a matroid and r is its rank function [, [3].

Ezample 3.11 (A Uniform Matroid). Let the ground set be £ = {1,2,3,4}. The uniform
matroid Us 4 is defined by declaring a set I C F independent iff |I| < 2.
Thus the independent sets are

T—{ICE:|1|<2}.
and the circuits are precisely the 3-element subsets:
C={{i,j,k} 4,5,k e E}.
The bases are all 2-element subsets of E:
B={{i,j}:i#3j, i,j€E}.
This example shows a non-graphic matroid whose structure is determined purely by cardi-

nality constraints.

Remark 3.12 (Dual viewpoint). If M is a matroid on E specified by any of the systems
above, then its dual M* is obtained by applying the same construction to the complements
of bases, the cocircuits (minimal sets meeting every basis), or the corank function r*(X) =
| X| + r(E\ X) — r(E), respectively. Thus one can equally well view a matroid as being
specified by its bases, its cobases, its circuits, its cocircuits, its rank function, or its corank
function; all of these encode the same underlying structure [4] 3].

Ezample 3.13 (Dual of a Graphic Matroid). Let G be the triangle graph with edge set
E ={ey, s, €3} and cycle matroid M (G). We saw that the bases of M (G) are the 2-element
subsets of E.

The dual matroid M (G)* has bases equal to the complements of bases of M(G):

B* = {E \ B:Be¢ B(M(G))} = {{61}, {62}, {63}}.
Since bases of size 1 correspond to rank 1, the circuits of M (G)* are the 2-element subsets:
C* = {{eie;} i # 7}

Thus in the dual, the "cycles” become ”cuts”: removing any one edge disconnects the
graph minimally. This example demonstrates explicitly how matroid duality interchanges
circuits and cocircuits.



4 Matroids and Graph Theory

Graph theory provides some of the most accessible and important examples of matroids. In
particular, graphic matroids M (G) and cographic matroids M*(G) show how the abstract
notion of independence in a matroid can appear naturally in a familiar setting. These ideas
trace back to Whitney’s original paper [I] and were later developed further by Tutte in his
work on graph invariants [4]. Because of this history, the connection between graphs and
matroids forms one of the foundations of the subject [3] 2].

4.1 Graphic and Cographic Matroids

Given a graph G, the graphic matroid M (G) is defined by taking the edges of G as the ground
set, and declaring a set of edges to be independent if it does not contain a cycle. In this
framework, the circuits of M(G) are exactly the simple cycles of the graph. This example is
often one of the first indications that matroids capture the structure of independence beyond
linear algebra.

The corresponding dual construction produces the cographic matroid M*(G). Here, the
circuits are minimal edge cuts, also known as bonds. While the graphic matroid emphasizes
how edges combine to form cycles, the cographic matroid focuses on how removing certain
edges can disconnect the graph. Whitney and Tutte showed that this dual relationship
reflects deeper structural connections in graph theory [, [4].

This duality helps explain why spanning trees, cuts, and flows in graphs are closely
related. For instance, spanning trees correspond to bases in M(G), while minimal cuts
correspond to circuits in M*(G).

Ezample 4.1 (A Graphic Matroid). Consider the graph G consisting of a triangle with vertex
set V' ={1,2,3} and edge set

E={e1=(12), es=(23), e5=(31)}

The graphic matroid M (G) is defined on ground set E.

Figure 1: The graph G with vertices {1,2,3} and edges e; = {1,2},e5 = {2,3},e3 = {3,1}
used in the graphic matroid example.

Independent Sets. A set of edges is independent iff it contains no cycle. Thus:

Z(M(G)) = {0,{e1}, {e2}, {es}, {e1, ea}, {ea, e}, {er, es}}



Circuits. The only cycle in G is the 3-cycle, so:
CM(@) = {{er eaea}}.

Bases. A base is any maximal acyclic subset, i.e. any spanning tree. Thus every 2-element
subset is a base:

B(M(G>) = {{617 62}7 {627 63}7 {617 63}}‘

Rank. The rank is the size of any base:

r(M(G)) =2.

Dual Matroid. Since G is a 3-cycle, the dual matroid M (G)* is the uniform matroid
M(G)* =U,zs,
whose bases are the singletons. This example illustrates the correspondence:

Bisabaseof M <= FE\ Bisa base of M".

4.2 Graphoids

The term graphoid is used in the combinatorial literature to describe matroids that arise
from graph-related constructions, even when they do not come directly from a standard
graph. One example is the bicircular matroid, where a set of edges is independent if each
connected component contains at most one cycle. Oxley includes graphoids when discussing
broader classifications of matroid families [3].

Graphoids illustrate how graphical structure can extend beyond ordinary graphs while
still producing meaningful matroidal behavior. They clarify the boundary between matroids
that are genuinely graphic and those that only share certain graphical properties. This makes
them useful in understanding how graph theory influences the development of matroid theory
more generally.

5 The Greedy Algorithm Theorem

This theorem is one of the most important foundational results in matroid theory, proved in
several classical texts including Welsh [2] and Oxley [3].

Theorem 5.1 (Greedy Algorithm Theorem). Let M = (E,Z) be a matroid and let w : E —
R be a weight function. Order the elements of E so that w(er) > w(ez) > -+ > w(ey,), and
let the greedy algorithm construct

]0 _ @7 ]Z _ {]i—l U {61'}, Zf ]i—l U {61} & I,

14, otherwise.

Let I, = I,,,. Then I, is a mazimum—weight independent set of M.
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Proof. The set I, is independent by construction. Let J € Z be any independent set. We
show that w(l,) > w(J).
List the elements chosen by the greedy algorithm in the order added:

Ig - {fla'”’fk:}‘

We will construct sets
Jo, J1, -0y Ik

such that: (i) Jy = J; (ii) each J; is independent; (iii) |.J;| = |J|; (iv) {f1,...,fi} C Ji; (V)

Assume J;_; has been constructed. If f; € J;_1, set J; = J;_1.

If f; ¢ J;_1, then since the greedy algorithm added f;, the set I, _; U{f;} is independent.
Because all maximal independent sets in a matroid have the same size and |[;_;| < |J;_1],
the augmentation property applied to I;_; and J;_; implies that there exists x € J;_1 \ I;_1
such that

(i \{z}) U{fi} € T.
Define
Ji = (Jioa \ {z}) U{fi}.

Then J; is independent and |J;| = |J;—1].
Since the elements are processed in nonincreasing weight order, every element that could
have been added at step ¢ has weight at most w(f;). In particular, w(f;) > w(x), so

w(J;) = w(Jiz1) —w(x) +w(fi) > w(Ji—1).

Thus J; satisfies all required properties.

After k steps we obtain Ji, which contains all of /;, and has the same size as J. Since all
maximal independent sets of a matroid have the same cardinality, it follows that J, = I,.
Therefore

w(ly) = w(Jy) > w(Jy) = w(J).
Since J was arbitrary, I, has maximum weight among all independent sets. O]

2.

6 Modern Applications

6.1 Representability

One really important question in matroid theory is whether a matroid actually comes from
linear algebra. A matroid is called representable over a field F if you can label its elements
with vectors in F” so that a set is independent in the matroid exactly when the corresponding
vectors are linearly independent. Whitney first noticed this connection [I], but the modern
theory mostly comes from Oxley [3].

What makes representability interesting is that it depends a lot on which field you use.
For example, the Fano matroid F,; works over Fy, but not over R. The non-Fano matroid
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is the opposite. So it is not just a yes/no property—different fields give different answers.
This was surprising to me because I originally thought linear independence would behave
the same everywhere, but it definitely does not.

A major idea in this area is using ezxcluded minors to understand representability. One
famous result is:

Theorem 6.1 (Tutte). A matroid is representable over Fy if and only if it has no Us 4 minor.

This basically means that there is one small matroid, U,4, that blocks binary repre-
sentability. If your matroid contains it, then it cannot come from vectors over Fy. I think
this kind of “forbid one configuration and everything works” result is really cool.

There is also a huge conjecture by Rota that said every finite field should have a finite
list of excluded minors that characterize representability over that field. This was proven
recently, which is a big deal, even though we still do not actually know what the lists are.
It shows that representability has a deeper structure than people expected.

Representability connects matroids to other areas too. In coding theory, linear codes
are basically representable matroids, and things like minimum distance relate to dependent
sets. In network coding, whether you can send information efficiently sometimes depends on
whether a certain matroid is representable over a field. So these ideas actually show up in
real communication systems.

6.2 The Tutte Polynomial

The Tutte polynomial was introduced by W. Tutte [4] while studying graph colorings, but
later people realized it works for matroids too. It is defined for a matroid M by

Tu(w,y) =Y (x— 1) BTy — )=,
ACE

At first this formula looks pretty overwhelming, but the surprising thing is how much infor-
mation it contains. A bunch of different combinatorial ideas that used to seem unrelated all
turn out to be special cases of the Tutte polynomial [2] [3].

One of the main tools for working with Ty (x,y) is the deletion—contraction rule. If e is
not a loop or a coloop, then

TM(x7y> - TM\e(x7y) + TM/e(‘ray>‘

If e is a loop or a coloop, the formulas become

TM(£7 y) =Y TM\e(ma y) (IOOp), TM (.CE, y) =z TM/e(xv y) (COIOOp)'

These rules let you break down a matroid step by step, which feels a lot like simplifying a
problem by removing one element at a time. This is a big reason why the Tutte polynomial
shows up everywhere in combinatorics.

For graphs, the Tutte polynomial gives several famous results in one framework. If M (G)
is the cycle matroid of a graph G, then:

e the number of spanning trees of G' is Ty (1, 1),
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e the chromatic polynomial comes from

xa(\) = (=D)VIEHONETy 60 (1 = X, 0),

e flow and tension polynomials, and network reliability, are also evaluations of Th ) (x, y).

So instead of having separate formulas for all these things, the Tutte polynomial explains
them all at once.

What I really like is that the Tutte polynomial still works even when there is no graph
picture at all. In coding theory, certain weight enumerators of linear codes can be written
using Tutte-like polynomials. In statistical physics, the partition function of the Potts model
turns out to be an evaluation of the Tutte polynomial along a curve in the (z,y)-plane. So
ideas from physics can actually answer combinatorial questions and vice versa.

Overall, the Tutte polynomial shows how one idea can connect a ton of different areas.
Something that started as a tool for graph colorings now links combinatorics, coding theory,
and even physics [4, 2, ?]. To me, this really shows the unifying power of matroid theory.

6.3 Geometry and Matroids

At first, matroids feel very combinatorial, since they are all about independence sets and
circuits. But in the last couple of decades, people have realized that matroids actually have
really interesting geometric structures attached to them (see surveys by Ardila [5]). Two of
the main ones are matroid polytopes and Bergman fans.

A matroid polytope is a shape in high-dimensional space where each vertex represents a
basis of the matroid. Even though that sounds abstract, it gives a way to study matroids
using geometry. For example, properties like exchanges between bases show up as edges in
the polytope. This means that questions about independence and structure can sometimes
be answered by looking at the geometry of the polytope instead of working purely combina-
torially. I think this is really cool because it turns a discrete object into something you can
visualize (at least in lower dimensions).

The other major geometric object is the Bergman fan of a matroid. This comes from
tropical geometry, which basically replaces usual addition and multiplication with min and
+, creating a kind of “piecewise linear” version of geometry. The Bergman fan captures all
possible ways a linear space can degenerate, and it turns out that matroids describe exactly
the combinatorial patterns behind those degenerations. So a Bergman fan lets us see how a
matroid behaves like a tropical variety, which is a big idea in modern algebraic geometry.

One of the most shocking results in this area is that matroids satisfy analogues of the hard
Lefschetz theorem and the Hodge—Riemann relations. These are extremely deep results in
algebraic geometry that originally applied to smooth projective varieties. The fact something
as combinatorial as matroids had similar properties to geometric objects was very suprising.

7 Conclusion

Matroid theory provides a unifying lens through which independence phenomena in algebra,
graph theory, and optimization can be understood. From Whitney’s original axioms [I] to
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Tutte’s duality and invariants [4], through the classical textbooks of Welsh and Oxley [2, 3],
and finally to modern developments in geometry [5], matroids continue to offer a powerful
framework.
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