
The Borsuk-Ulam Theorem & Tucker’s Lemma

Leo Tsai

December 7, 2025

1 Introduction

Topology is related to combinatorics in some interesting ways. Our main goal in this paper
is showing that the Borsuk-Ulam Theorem, a topological statement, is equivalent to Tucker’s
Lemma, a combinatorial statement. We’ll then prove the Borsuk-Ulam Theorem through
a proof of Tucker’s Lemma. We’ll end with a solution of the necklace splitting problem
(complete with a story about pirates!) that uses the Borsuk-Ulam Theorem in its proof.

2 Background

First, we need to talk about simplices.
Definition 1. A simplex is the convex hull of a set A of linearly independent points in

Rn. The points in A are called the vertices of the simplex, denoted V (A). Here are some
examples of simplices:

We can imagine the convex hull like this: Say that |A| = n. If we imagine an (n − 1)-
dimensional balloon containing all the points of A inside and deflate it, the resulting shape
we get is a (n − 1)-dimensional simplex. If we take the convex hull of a subset of points in
A, we get a face of the simplex.

We can combine multiple simplices together to get a simplicial complex.
Definition 2. A simplicial complex is a collection of simplices ∆ such that each face

of a simplex σ ∈ ∆ is also in ∆, and that for any two simplices σ1, σ2 ∈ ∆, their intersection
σ1 ∩ σ2 is a face of both σ1 and σ2.
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For example, this is a simplicial complex.

This is not a simplicial complex, because A ∩B is not a face of B.

We call the union of all simplices in a simplicial complex ∆ the polyhedron of ∆,
denoted by ||∆||.

Sometimes, we want to divide shapes into simplices. This is a called a triangulation.
Definition 3. A triangulation of a topological space X is a simplicial complex ∆ such

that ||∆|| ∼= X. (X ∼= Y means that there exists a homeomorphism X → Y, so X can be
smoothly deformed to become Y .)

For example, here is a triangulation of the ball B2 :

3 The Borsuk-Ulam Theorem and Tucker’s Lemma

The Borsuk-Ulam Theorem is a topological statement, while Tucker’s Lemma is a combina-
torial statement. In this section, we’ll prove that they’re equivalent to each other.

Borsuk-Ulam Theorem [Bor33]. Let f : Sn → Rn be a continuous mapping. Then,
there exists a point x ∈ Sn such that f(x) = f(−x).

Essentially, what this theorem states is that if we take a ball living in n + 1 dimensions
and try to smoosh it in a smooth way down to a flat n-dimensional hyperplane, there will be
two points that overlap with each other, that were originally on opposite sides of the surface
of the ball. Here’s an example of a possible smooshing when n = 2 :
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Tucker’s Lemma is a bit more involved. Let T is a triangulation of Bn that’s antipodally
symmetric on the boundary of Bn (which is Sn−1). This means that if a point x ∈ T is
also on Sn−1, then we also know that −x ∈ T. Here’s an example of a triangulation T when
n = 2 :

We label vertices of T with a number between −n and n (but not 0) such that opposite
points on Sn−1 get opposite numbers. Formally, if V (T ) is the set of vertices of T, we define
a function λ : V (T ) → {1,−1, 2,−2, . . . , n,−n} such that λ(−x) = −λ(x) if x ∈ Sn−1.

Tucker’s Lemma [Tuc45]. There will be a 1-dimensional simplex in T that has its two
vertices labeled by opposite numbers. In the example above, it’s colored in red.

3.1 Equivalence

Time to prove that these two statements are equivalent, through a bunch of side quests...
To start, we rewrite the two statements into more convenient forms.
Claim: Borsuk-Ulam Theorem ⇐⇒ There is no continuous mapping f : Bn → Sn−1

such that for all x ∈ Sn−1, we have −f(x) = f(−x). (1)
Proof: We first show the forward direction.
Assume the Borsuk-Ulam Theorem is true. Let f : Sn → Rn be an antipodal mapping.

(An antipodal mapping is one that for all x, we have −f(x) = f(−x).) We know this mapping
will have a point where f(x) = f(−x) = 0, by applying Borsuk-Ulam to f. Because of this,
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we can never have an antipodal mapping from f : Sn → Sn−1 since any map that satisfies
−f(x) = f(−x) will have f(x) = 0 for some x.

Now, suppose we had a mapping g : Bn → Sn−1 such that for all x ∈ Sn−1, we have
−g(x) = g(−x). Let π be the projection where π(x1, . . . , xn+1) = (x1, . . . , xn). Then, consider
the function f : Sn → Sn−1 where

f(x) =

{
g(π(x)) if xn ≥ 0

−g(π(−x)) if xn < 0.

This function is continuous, because when xn = 0, we have that π(x) ∈ Sn−1, which means
that −g(π(x)) = g(−π(x)), so g(π(x)) = −g(π(−x)). This function is then an antipodal
mapping from Sn to Sn−1, which is not possible, which must mean that there is no continuous
mapping f : Bn → Sn−1 such that for all x ∈ Sn−1, we have −f(x) = f(−x). This is what
we wanted to show!

The other direction goes through these functions in reverse. Suppose that there is no
continuous mapping g : Bn → Sn−1 such that for all x ∈ Sn−1, we have −g(x) = g(−x).
If we were to have an antipodal mapping f : Sn → Sn−1 and we let g(x) = f(π−1(x)) (we
define the range of π−1(x) to be Sn ∩ {x ∈ Rn+1 : xn+1 ≥ 0}), we would have a mapping
where −g(x) = g(−x) when x ∈ Sn−1. This means that the mapping f cannot exist.

Now, suppose we had an antipodal mapping h : Sn → Rn where h(x) ̸= 0. Then, the

function f(x) = h(x)
||h(x)|| would satisfy the conditions above, so such an h cannot exist. This

means an antipodal mapping h : Sn → Rn must have some point where h(x) = 0.
Finally, if we have a continuous mapping f : Sn → Rn, we can create an antipodal

mapping h(x) = f(x) − f(−x), which means that f(x) = f(−x) at some point. And this
is the Borsuk-Ulam Theorem! Whew. As a fun little bonus, because of our proof, all these
claims about these different kinds of functions we made along the way are all equivalent to
the Borsuk-Ulam Theorem.

To reformulate Tucker’s lemma, we first define a special simplicial complex ⋄n−1. If we
have a set of points V (⋄n−1) = {1,−1, 2,−2, . . . , n,−n}, we can define a simplicial complex
by saying that any subset V ′ ⊆ V (⋄n−1) is a simplex within the complex if V ′ does not si-
multaneously contain two opposite numbers. For example, here is ⋄1 (note that the simplices
are dots and lines).

Claim: Tucker’s Lemma applies on triangulation T ⇐⇒ there does not exist a map
λ : V (T ) → V (⋄n−1) that preserves simplices when going from T to ⋄n−1 and is also antipodal
on the boundary. (2)

Proof: We see that λ takes the vertices in T and maps them to vertices in ⋄n−1, effectively
assigning each vertex a number between −n and n. Tucker’s Lemma states that one of the
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simplices S in T will contain opposite numbers. However, if λ preserves simplices when going
from T to ⋄n−1, the simplex that S corresponds to in ⋄n−1 cannot exist by how we defined
simplices in ⋄n−1. Thus, there cannot exist such a λ.

Now we’re ready to show equivalence!
Claim: (1) =⇒ (2).
We prove the contrapositive. Suppose that λ in (2) actually exists. Then, we can use the

affine extension of λ to construct a function that “fills in the gaps” of the domain of λ to
become Bn. (See page 15 of [Mat03] for more details on how this function is defined.) Let
this function be ||λ||. Then, since ⋄n−1 ∼= Sn−1, we can use ||λ|| to create a continuous map
from Bn to Sn−1 that is antipodal on the boundary. This contradicts (1).

Claim: (2) =⇒ (1).
Again, we prove the contrapositive. Assume we have a continuous map f : Bn → Sn−1

that’s antipodal on Sn−1. We’ll use f to construct a triangulation T and λ that contradicts
(2).

Let’s start by constructing T. The only constraint we need for T is for all simplices in T
to have a diameter (defined as the greatest distance between any two vertices) less than δ,
for some δ we choose.

Let’s define what δ is. Let ϵ = 1√
n
, meaning that for every y ∈ Sn−1, we have that

some component yi of y satisfies yi ≥ ϵ. This is because that since y ∈ Sn−1, we have√
y21 + y22 + · · ·+ y2n = 1.
Now, because f is a continuous function on Bn, which is a compact set, it must be

uniformly continuous. This means that we can choose δ such that if x, x′ ∈ Bn are less than
δ apart, we have that no component of f(x)−f(x′) is greater than 2ϵ. This is how we define
δ for T : it’s a surprise tool that will help us later.

We can now construct our labeling function λ. Let k(x) = min{i : |f(x)i| ≥ ϵ}, where
f(x)i denotes the ith component of f(x). We’re guaranteed to have {i : |f(x)i| ≥ ϵ} be
nonempty, by our definition of ϵ. Now, we set our labeling λ to be

λ(x) =

{
k(x) if f(x)k(x) > 0

−k(x) if f(x)k(x) < 0.

This labeling satisfies λ(−x) = −λ(x) when x ∈ Sn−1, since f is antipodal on Sn−1. Tucker’s
Lemma guarantees that there is a simplex in T consisting of points {v, v′} where λ(v) =
−λ(v′) > 0. Then, by how we defined our functions, f(v)λ(v) ≥ ϵ andf(v′)λ(v) ≤ −ϵ. This
means that (f(v) − f(v′))λ(v) ≥ 2ϵ, which gives us a contradiction, based on how we chose

δ. Thus, our claim is true.

This means that we’ve now shown that the Borsuk-Ulam Theorem is equivalent to
Tucker’s Lemma. Hooray!

3.2 Proving Tucker’s Lemma

In our proof that Tucker’s Lemma =⇒ (1), our only requirement for T was that all simplices
in T have a diameter less than some δ. In this proof, which follows [FT81], we’ll assume some
more things about T to make the proof easier, proving a weaker version of Tucker’s Lemma.
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For a proof for the general Tucker’s Lemma, after finishing this proof, we can follow the
above logic for Weaker Tucker’s Lemma =⇒ (1) =⇒ (2) =⇒ Tucker’s Lemma.

Okay, here we go! Imagine we have a ball Bn centered at the origin. The set of n hyper-
planes formed by setting one of the n coordinates to 0 triangulate the ball into 2n sections.
We call this a hyperplane triangulation. For example, here is a hyperplane triangulation of
the ball B2 :

We can refine hyperplane triangulations by triangulating the simplices of the hyper-
plane triangulation (and making sure the triangulation is antipodally symmetric along the
boundary). A possible refinement looks like this, with labels added for Tucker’s Lemma
(the triangles that are formed are 2-dimensional simplices–I didn’t shade them to make the
diagram less chaotic). Note that the red 1-dimensional simplex contains opposite numbers.

We’ll prove Tucker’s Lemma on these special triangulations. The simplices in these
triangulations can be as small as we want, so our proof above can hold. Our proof is a
proof by contradiction, so we’re assuming that there does not exist a simplex with opposite
numbers in T.
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For each simplex σ, let λ(σ) be the set of labels attached to the vertices of σ. For example,
the red simplex has λ(σ) = {−2, 2}. Let’s also define a function S on σ where

S(σ) = {i : xi > 0} ∪ {−i : xi < 0},

for some x in the interior of σ. The function S(σ) is well-defined, since we know that all points
in the interior of σ are on the same side of the coordinate axes, because of our restriction on
T. As an example, the red simplex has S(σ) = {1, 2}.

Now, let’s define a good simplex σ as one where S(σ) ⊆ λ(σ). The red simplex is not
good, since {1, 2} is not a subset of {−2, 2}. Here are all the good simplices in our example
triangulation (with labels for S(σ)):

Let’s define a graphG whose vertices are the good simplices of T, where simplices σ, σ′ ∈ T
are connected if they are either antipodal simplices on the boundary, or if σ is a face of σ′

where λ(σ) = S(σ′). We’ll prove that, if Tucker’s Lemma is false, this graph will have exactly
one vertex with an odd degree, which gives us a contradiction.

First of all, let’s find our vertex with an odd degree. The zero-dimensional simplex O at
the origin is connected to exactly one other good simplex: in this case, since λ(O) = −1, the
highlighted two simplices are connected.
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Now we need to show that all other good simplices are connected to two simplices.
Let k = |S(σ)|. Good simplices must have at least dimension k − 1, since they must

contain at least k points to have S(σ) ⊆ λ(σ). We also know that σ must be in the space
spanned by the k vectors corresponding to the coordinate axes, so the maximum dimension
σ can have is k. This means that all good simplices have dimension k or k − 1.

Case 1: A good simplex has dimension k − 1. This simplex could either lie on the
boundary or not. If it lies on the boundary, it’s connected to its antipodal simplex and
a neighboring simplex that repeats one of its labels (because otherwise we would have a
simplex with opposite numbers). If not, it’s connected to two simplices that must repeat its
labels, by similar logic. In the diagram below, the blue simplices have dimension k − 1, and
are each connected to the two red simplices.
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Case 2: A good simplex has dimension k. This simplex either has a repeating label
on one of its vertices, or has some label not in S(σ). If it has a repeating label, it must have
two faces that do not have repeating labels, which are both good simplices. If there is an
extra label, then one of σ’s connections must be the face without the extra label. The other
connection is the good simplex that has σ as a facet.

In every case, each vertex has degree 2. This means that our graph has exactly one
vertex with an odd degree, which gives us a contradiction. We’ve proved (a weak version)
of Tucker’s Lemma, which means we’ve proven the Borsuk-Ulam Theorem!

4 The Necklace Splitting Problem

As a bonus, we’ll end this paper off with the necklace splitting problem, which has flavortext
that gives off Ted-Ed riddle vibes.

Here’s the lore: you and your fellow pirate friend have found a necklace made of a bunch
of different (suspiciously sphere-shaped) jewels! You want to divide up the jewels fairly, so
that you both get the same number of jewels each. What’s the minimum number of cuts
you need to make to the necklace so that you each get an equal number of jewels? Here’s an
example, with three kinds of jewels:
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Our claim is that for d jewels, the minimum number of cuts required is no more than d.
To prove this, we’ll first prove the ham sandwich theorem.

4.1 The Ham Sandwich Theorem

Intuitively, the ham sandwich theorem states that given a piece of ham, cheese, and bread
floating in space, we can make a single cut that bisects the ham, cheese, and bread. More
generally, d masses living in Rd can be simultaneously bisected by a hyperplane. Behold, my
beautiful illustration where d = 2:

To state this formally, let’s first define a finite Borel measure, which is a measure µ on
Rd such that all open sets are measurable and 0 < µ(Rd) < ∞. Intuitively, all the mass is
concentrated in a finite space, so that µ(Rd) is finite.

Ham Sandwich Theorem. If µ1, µ2, . . . , µd are finite Borel measures on Rd where a
hyperplane has measure 0 for all µi, then there exists a hyperplane that splits Rd into two
halfspaces h+ and h− such that

µi(h
+) = µi(h

−) =
1

2
µi(Rd)

for all i.
To prove this, we’re ultimately going to define a function f : Sd → Rd that we can use

the Borsuk-Ulam theorem on. First, let’s associate each point u = (u0, u1, . . . ud) ∈ Sd to a
halfspace by defining

h+(u) = {(x1, . . . , xd) ∈ Rd : u1x1 + · · ·+ udxd ≤ u0}.

Antipodal points of Sd correspond to opposite half-spaces, because h+(u) corresponds to
u1x1+· · ·+udxd ≤ u0 while h

+(−u) means−u1x1−· · ·−udxd ≤ −u0, or u1x1+· · ·+udxd ≥ u0.
Our function f : Sd → Rd is then defined by

f(u) = (µ1(h
+(u)), µ2(h

+(u)), . . . , µd(h
+(u))).

This function is continuous (though we’re skipping the proof), which means we can apply
the Borsuk-Ulam theorem to get that there exists a x ∈ Sd such that f(x) = f(−x). This
means that for all i, we have µi(h

+(x)) = µi(h
+(−x)), so the hyperplane that bounds h+(x)

is the hyperplane we want.

From this version of the ham sandwich theorem, we can do a bit of work (see Chapter 3.1
of [Mat03]) to get the discrete form of the ham sandwich theorem, which gives a hyperplane
that bisects sets of points A1, A2, . . . , Ad ⊂ Rd.
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4.2 Back to Necklaces

To finish off our necklace proof, we string the necklace along the moment curve in Rd. As a
reminder, the moment curve C is the curve in Rd where

C = {c : c = (x, x2, x3, . . . , xd), x ∈ R}.

Define Ai as the set of locations of the jewels of type i along the moment curve. We can
use the discrete ham sandwich theorem to find a hyperplane that bisects all Ai. Since one
of the properties of the moment curve is that a hyperplane can only intersect the moment
curve in a maximum of d places, this then means that we need at most d cuts to evenly split
our necklace. Hooray!
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