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Introduction

A linear programming problem (LP) is of the form

max cTx

subject to Ax ≤ b, x ≥ 0

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2

... amn


is a coefficient matrix, and

c =


c1
c2
...
cn

 , x =


x1

x2

...
xn

 .

are vector matrices. The quantity we are trying to maximize therefore becomes

cTx =

n∑
i=1

cixi

In the real world, LPs are most commonly used in transportation systems or profit maximization
scenarios. For instance, suppose a company sells two goods X and Y with respective counts x1 and
x2. Then, the profit-maximizing LP can be represented by

max 4x1 + 3x2

subject to x1 + x2 ≤ 48, x1 ≥ 0, x2 ≥ 0

When all constraints are mapped in Rn, the Fundamental Theorem of Linear Programming states
that if an optimal solution exists, then at least one optimal solution occurs at a vertex of the feasible
region. This motivates the simplex method, which travels from vertex to vertex along edges of the
feasible polytope.
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However, the simplex method can cycle in degenerate vertices (where more than n constraints
intersect). To avoid this and achieve better theoretical performance, we examine interior-point
methods which instead navigate through the interior of the feasible region.

In this paper, we introduce linear programming, review the necessary mathematical background,
and present the main ideas behind the polynomial-time interior point methods that solve it effi-
ciently.

Preliminaries

It is necessary to list rudimentary definitions before proceeding with the methods for solving a linear
program. Using the form presented in the introduction, we label A as the constraint matrix, b
as the offset vector and c as the objective vector.

Definition 1: A convex set is a set S such that for any x, y ∈ S and λ ∈ [0, 1], we must
have

λx+ (1− λ)y ∈ S (1)

Here, (1) is the defining characteristic of the line passing through x and y. In an LP, the feasible
polytope is assumed to be convex.

Definition 2: A convex function is a function f such that for λ ∈ [0, 1], f satisfies the in-
equality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Definition 3: A concave function is a function f such that for λ ∈ [0, 1], f satisfies

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

We are now ready to prove the Fundamental Theorem of Linear Programming.

Theorem: The fundamental theorem of linear programming states that given a LP, the
global optimization of the objective function exists at a vertex of the feasible convex polytope.

Proof: We note that f(x) = cTx satisfies

f(λx+ (1− λ)y) = cT(λx+ (1− λ)y)

= cT(λx) + cT((1− λ)y)(via linearity of dot product)

= λcTx+ (1− λ)cTy

= λf(x) + (1− λ)f(y)

Hence, the equality case is achieved, implying that the objective function f is convex and concave.
By Bauer’s maximum principle, given a concave function on a convex set, the minimum value of
the function occurs at a vertex (extreme point). Similarly, given a convex function on a convex set,
the maximum value of the function occurs at a vertex (extreme point). Therefore, since f is convex
and concave, its global optimum (maximization or minimization) exists at a vertex of the feasible
convex polytope.
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Primal and Dual Problems

A primal LP problem is written in the form

max cTx

subject to Ax ≤ b, x ≥ 0

Its corresponding dual problem can be written as

minbTy

subject to Ay ≥ c, y ≥ 0

To obtain the dual, consider expanding the primal problem:

max

n∑
i=1

cixi

subject to

a11x1 + · · ·+ a1nx1 ≤ b1

a21x1 + · · ·+ a2nx1 ≤ b2

...

am1x1 + · · ·+ amnx1 ≤ bm

x1 ≥ 0

x2 ≥ 0

...

xn ≥ 0

We can add all objective constraints and scale using y to obtain

y1 · (a11x1 + · · ·+ a1nxn)

+ y2 · (a21x1 + · · ·+ a2nxn)

+ · · ·

+ ym · (am1x1 + · · ·+ amnxn)

≤ y1b1 + y2b2 + · · ·+ ymbm

Now, observe that we can factor x1, x2, . . . , xn from the left-hand side:

n∑
j=1

(
m∑
i=1

yiaij

)
xj ≤

m∑
i=1

yibi.
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For this inequality to hold for all feasible x ≥ 0, it must be that each coefficient of xj on the left is
at least cj , otherwise, we could pick a large xj to violate the inequality. In matrix notation, this is
exactly

ATy ≥ c.

This is the key observation: the dual problem arises naturally by asking, “What combination of
constraints gives a guaranteed upper bound on the primal objective?”

Therefore, the dual problem becomes

minbTy subject to ATy ≥ c, y ≥ 0.

This derivation highlights why duality is so important: any feasible dual solution gives an upper
bound on the primal, and if we find a pair of primal and dual solutions with matching objective
values, we know we have reached optimality. Later, when we discuss interior point methods, we
will see that tracking both primal and dual solutions together is the heart of the algorithm, as it
allows us to measure how close we are to optimality via the duality gap.

Weak and Strong Duality

Weak and strong duality formalize the relationship between primal and dual problems and provide
the theoretical backbone for interior point methods.

Weak Duality: Suppose x is feasible for the primal and y is feasible for the dual. Then the
primal objective is always less than or equal to the dual objective:

cTx ≤ bTy.

Proof: Let x satisfy Ax ≤ b and x ≥ 0, and let y satisfy ATy ≥ c and y ≥ 0. Consider

cTx ≤ (ATy)Tx = yT (Ax) ≤ yT b.

The first inequality uses dual feasibility: AT y ≥ c implies (AT y)Tx ≥ cTx for x ≥ 0. The second
inequality uses primal feasibility and y ≥ 0: each term yi(Ax)i ≤ yibi. Combining these gives
cTx ≤ bT y, which is exactly the weak duality statement.

Weak duality is powerful because it immediately gives us a way to verify bounds. Even if we do
not know the optimum, weak duality provides a guaranteed inequality.

Strong Duality: Weak duality only gives an inequality. Strong duality tells us that under
reasonable assumptions (like strict feasibility), the inequality becomes equality at optimality:

cTx∗ = bTy∗.

Proof Sketch: For linear programs, this follows from complementary slackness conditions:

Ax∗ ≤ b, x∗ ≥ 0,

ATy∗ ≥ c, y∗ ≥ 0,

y∗i (bi − (Ax∗)i) = 0, x∗
j ((A

T y∗)j − cj) = 0.

These conditions say that either a constraint is tight, or its corresponding dual multiplier is zero.
When these hold, the duality gap

bT y∗ − cTx∗
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is zero, proving equality of primal and dual objectives.
Strong duality is critical for interior point methods because it allows us to define the duality

gap as a measure of convergence. As the method iterates, we decrease this gap, and once it is
sufficiently small, we know we are essentially at the optimum.

Newton’s Method for the Barrier Problem

Interior point methods differ from simplex in that they do not move along edges of the polytope
but rather traverse its interior. To stay strictly feasible, we introduce a logarithmic barrier for the
inequality constraints:

ϕ(x) = −
m∑
i=1

ln(bi − (Ax)i)−
n∑

j=1

lnxj .

Motivation for the logarithmic barrier: The logarithmic function has the property that it
approaches −∞ as its argument approaches zero from the right. By taking the negative log of the
slack bi−(Ax)i and of each variable xj , we ensure that as x approaches the boundary of the feasible
region, ϕ(x)→ +∞. This effectively penalizes solutions near the boundary, keeping iterates safely
inside the interior. In addition, ϕ is smooth and strictly convex, which makes it compatible with
Newton’s method.

The barrier-augmented objective is

fµ(x) = cTx+ µϕ(x),

where µ > 0 controls how strongly we enforce staying away from the boundary. As µ → 0, the
barrier becomes negligible and fµ(x) approaches the original linear objective.

Newton’s method is applied to this smooth, strictly concave (or convex for minimization) ob-
jective. At each iteration, we compute the gradient and Hessian:

∇fµ(x) = c−
m∑
i=1

ai
bi − aTi x

−X−11, ∇2fµ(x) =

m∑
i=1

aia
T
i

(bi − aTi x)
2
+X−2.

Here, ai is the i-th row of A, and X is the diagonal matrix with x on its diagonal.
The Newton step ∆x solves

∇2fµ(x)∆x = −∇fµ(x),

and we update x ← x + α∆x, where α is chosen to maintain strict feasibility. Because fµ is self-
concordant, Newton’s method achieves quadratic convergence near the optimum. This combination
of barrier and Newton step is the core mechanism of interior point methods.

Central Path

The central path is defined as the set of solutions to the barrier problem as µ decreases:

x(µ) = argmax{cTx+ µϕ(x)}.

Some important properties:
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• The iterates stay strictly feasible: Ax(µ) < b, x(µ) > 0 for all µ > 0.

• As µ→ 0, x(µ) approaches an optimal solution of the original LP.

Intuitively, the barrier prevents the iterates from touching the boundary too early. By gradually
decreasing µ and following Newton directions, the method traces a smooth path from the interior
toward the optimum. Each step is designed to reduce the duality gap and maintain strict feasibility.

The central path also provides a geometric perspective: it is a trajectory inside the feasible
polytope that guides us directly to the optimum without getting stuck at vertices. This contrasts
with the simplex method, which jumps along edges. The central path allows for a polynomial-time
analysis and explains why interior point methods are globally convergent.

Polynomial-Time Guarantees and Open Problems

One of the major theoretical breakthroughs of interior point methods is the polynomial-time guar-
antee. Karmarkar’s algorithm and subsequent variants solve a linear program with n variables and
m constraints in a number of iterations polynomial in n, m, and the input bit-length L. More pre-
cisely, the number of Newton iterations needed to reduce the duality gap below ϵ is O(

√
n log(1/ϵ)),

and each iteration involves solving a linear system based on the Hessian of the barrier-augmented
objective.

This is significant because it contrasts with the simplex method, which can take exponential
time in the worst case. The polynomial-time result shows that, in theory, linear programming can
always be solved efficiently regardless of the problem size or degeneracy.

Despite this success, there remain important open problems:

• Strongly polynomial LP: Can an algorithm exist whose runtime depends only on n and
m, independent of input size? This is still unknown.

• Numerical stability and efficiency: For very large-scale LPs, designing interior point
methods that are both fast and numerically robust remains challenging.

• Extensions to other problems: Applying interior point methods to quadratic, semidefinite,
and general convex optimization remains an active research area, with practical and theoretical
questions about convergence and complexity.

In summary, interior point methods give us both practical efficiency and strong theoretical
guarantees. By following the central path with barrier functions and Newton steps, tracking the
duality gap, and exploiting convexity, these methods provide a powerful alternative to simplex,
with room for ongoing improvements and deeper theoretical understanding.
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