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Abstract. Topological combinatorics is the application of topological methods to solve combinatorial prob-

lems. This paper will discuss the applications of the Borsuk–Ulam theorem and combinatorial homotopy

theory. We emphasize the relationship between the continuous nature of certain topological results and their
discrete corollaries.

1. Introduction

Topological combinatorics was conceived in 1978 with Lászlo Lovász’s seminal proof of the Kneser con-
jecture using the Borsuk–Ulam theorem, which remains central to the field; later, Tucker’s lemma was
proven its direct analogue in the discrete domain. Whereas the earlier discipline of combinatorial topology
studied the arisal of topological structures from combinatorial ones (later, this became algebraic topology),
the application of topology to discrete problems was new. More modern problems of topological combina-
torics involve the use of Borsuk–Ulam and homotopy theory to solve partitioning and fair division problems:
necklace-splitting and the ham sandwich theorem.

2. Topological Methods

We begin by laying the necessary topological groundwork.

Definition 2.1. A topological space is a pair (X, T ) where X is a set and T ∈ X is a system of sets that
satisfies the following properties:

(1) Both ∅ and X are in T .
(2) The intersection of finitely many sets in T is in T .
(3) The union of any arbitrary collection of sets in T is in T .

The elements of T are called open sets of X, and T is a topology on X.

Definition 2.2. For a topological space (X, T ), every subset Y ⊆ X defines a topological space (Y, {U ∩Y :
U ∈ T }). Such a Y is called a subspace.

On topological spaces, we define certain key concepts.

Definition 2.3. Two functions f, g : X → Y on topological spaces X and Y are considered homotopic,
denoted f ∼ g, if there exists a family of maps ft∈[0,1], f0 = f and f1 = g, such that there is a homotopy
H(x, t) = ft(x) between x× [0, 1] and Y that is continuous.

We can visualize the idea of homotopy by considering the two functions as different paths between two
points in space. They are homotopic if one may be deformed continuously into the other. Moreover, based
on homotopy, we can define an equivalence relation between spaces.

Definition 2.4. Two topological spaces X and Y are homotopy equivalent (i.e. belong to the same homotopy
class) if there exist continuous maps f, g : X → Y such that f ◦ g ∼ id(X) and g ◦ f ∼ id(Y ).

A stronger form of homotopy equivalence is useful in illustrating how certain visual representations of
topological spaces we will encounter are identical.

Definition 2.5. A homeomorphism of topological spaces (X1, T1) and (X2, T2) is a bijection φ : X1 → X2

such that φ and φ−1 are both continuous. If φ exists, we write X1
∼= X2 (X1 is homeomorphic to X2).

Example. We can visualize a homeomorphism as a continuous deformation of one shape into another. Con-
sider the longstanding quip that a torus is topologically equivalent to a coffee mug.
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Definition 2.6. The hypersphere Sd is the locus of all points in Rd+1 equidistant from a common center.

We can also define a homotopy group on functions.

Definition 2.7. The nth homotopy group of X is the set of maps from Sn with some given base point s0
into X with some given base point x0 such that s0 is mapped to x0.

Definition 2.8. A topological space X is n-connected if its first n homotopy groups are trivial (contain
only the identity function). The largest n such that this is true is denoted conn(X).

Example. S1 and S2 are the 1-dimensional circumference of the circle and the 2-dimensional surface of the
sphere, respectively.

Now, we consider simplicial complexes.

Definition 2.9. A simplicial complex K is a finite collection of nonempty finite sets X ∈ K, such that for
any X, every subset Y ∈ X is also an element of K. The union of all members of K is denoted V (K); that
is K can be said to be a set of subsets of V (K), the elements of which are called the vertices of K. The
elements of K are called its simplices.

Definition 2.10. Given a simplicial complex K, we construct the geometric realization K̃ of K. Embed
V (K) in (|V (K)| − 1)-dimensional space in general position (i.e. so that the points representing the vertices

are not contained in one hyperplane). Then K̃ is the union of all sets conv(S), S ∈ K. These convex hulls

are called the faces of K̃. We have for S1, S2 ∈ K,

conv(S1 ∩ S2) = conv(S1) ∩ conv(S2).

Example. If K is the complete complex on 3 vertices, K̃ is the union of the vertices, open edges, and interior
of a triangle.

Figure 1. Simplicial complex K3.

The 1-dimensional simplex is the line, the 2-dimensional simplex is the triangle, the 3-simplex is the
tetrahedron, and so on.

Definition 2.11. The dimension of a simplex S ∈ K is dim(S) = |S| − 1; it is the number of dimensions of
space in which it is imbedded.

Definition 2.12. The d-dimensional crosspolytope is the convex hull of the vectors in d-dimensional space
of the standard orthonormal basis and their negatives.

Definition 2.13. Given a topological space X, a triangulation of X is a simplicial complex K such that
X ∼= K̃.

Example. The simplest triangulation of the sphere Sn−1 is the boundary of an n-simplex; for n = 2, that is
the edge of the triangle; for n = 3, that is the surface of the tetrahedron.

Example. Below is an arbitrary triangulation of the disk (the union of the interior and boundary of the
circle).
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Two-dimensional crosspolytope. Three-dimensional crosspolytope.

Figure 2. Crosspolytope examples.

Figure 3. Triangulation of B2.

3. Borsuk–Ulam Theorem and Analogues

The study of topological combinatorics depends largely on the combinatorial applications of the Bor-
suk–Ulam theorem, which has many equivalent statements. Here, we provide six.

Theorem 3.1 (Borsuk–Ulam). The following statements are equivalent, and true.

(i) For every continuous mapping : Sd → Rd, there exists x ∈ Sn such that f(x) = f(−x).
(ii) An antipodal mapping f : Sd → Rd is a continuous mapping f such that f(−x) = −f(x) for all

x ∈ Sd. For every such f there exists a point x ∈ Sd such that f(x) = 0.
(iii) For any cover F1, . . . , Fd+1 of the sphere Sd by d + 1 by d + 1 closed sets, at least one set contains

a pair of antipodal points.
(iv) For any cover U1, . . . , Ud+1 of the sphere Sd by d+ 1 by d+ 1 open sets, at least one set contains a

pair of antipodal points.
(v) There is no continuous mapping f : Bd → Sd−1 that is antipodal on the boundary Sd−1.
(vi) If there exists a continuous antipodal mapping f : Sn → Sm, then n ≤ m.

Example. For d = 2, Borsak–Ulam (i), informally, states that if a “balloon animal” made from the balloon
S2 is continuously flattened to R2, there exists a pair of points antipodal on the original balloon that will
end up on top of each other. One can also visualize Borsuk–Ulam (iii) and (iv) for S2.

The first result of the combinatorial application is that this theorem has a remarkable discrete analogue.
Recall how a triangulation of the ball Bn partitions it into (sections homeomorphic to) the n-dimensional
simplices; these are discrete. Tucker’s lemma is a statement on these triangulations that is analogous to
Borsuk–Ulam (v) on the original ball.

Lemma 3.2 (Tucker). Let T be a triangulation of Bd that is antipodally symmetric on the boundary. Label
the vertices

λ : V (T ) → {+1,−1,+2,−2, . . . ,+n,−n}
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such that λ is antipodal on the boundary. Then there exists a complementary edge, i.e. a 1-simplex whose
vertex sum is 0.

Example. In this labeling of the aforementioned triangulation of the disk, the complementary edge is outlined
in red.
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Figure 4. Labeled triangulation of B2.

Proof. First, we restate the lemma. Let Ln−1 denote the simplicial complex on

V (Ln−1) = {+1,−1,+2,−2, . . . ,+n,−n}

such that F ⊆ V form a simplex if there exists no i ∈ [n] such that i ∈ F and −i ∈ F . This is simply the
boundary of the d-dimensional crosspolytope, so it is homeomorphic to Sn−1. Thus the condition of Tucker’s
lemma is equivalent to the condition that there exists no simplicial map λ of T into Ln−1 that is antipodal
on the boundary.

We then wish to prove that this is equivalent to Borsuk–Ulam (v), whose condition is also on the non-
antipodality of a map on the boundary.

Given Borsuk–Ulam (v), assume for the sake of contradiction the negation of Tucker. Then if there existed
such a map λ, then its canonical affine extension would be a continuous map Bn → Sn−1 antipodal on the
boundary.

Conversely, assume Tucker; we prove the contrapositive of its implication of Borsuk–Ulam. Assume that
there exists f : Bn → Sn−1 antipodal on the boundary. Then we construct a triangulation T and mapping
λ as follows.

Consider the coordinates of points y ∈ Sn−1. Let ε = 1√
n
; y must have at least one coordinate yi ≥ ε;

otherwise

1 = ||y|| =
∑

y2i < nε2 = 1.

Then by the ε–δ definition of continuity there exists δ > 0 such that if ||x−x′|| < δ, then ||f(x)−f(x′)|| ≤
2ε. We then choose T such that it has simplicial diameter at most δ.

Now, we define λ : V (T ) → {+1,−1, . . . ,+n,−n}. First let k(v) be the value of i that yields smallest
|f(v)i| that is still at least ε. Then

λ(v) =

{
+k(v) if f(v)k(v) > 0,

−k(v) if f(v)k(v) < 0.

Since f is antipodal on the boundary of Bn, we have λ is antipodal on the boundary as well. Thus by
Tucker’s lemma there exists some complementary edge vv′ such that λ(v) = −λ(v′) = i for some i. Then
f(v)i ≥ ε and f(v′)i ≤ ε, so ||f(v)− f(v′)|| ≥ f(v)i − f(v′)igeq2ε; we have a contradiction. □

4. Kneser’s Conjecture

The first instance of a combinatorial problem solved using Borsuk–Ulam is Lovász’s proof of the Kneser
conjecture in [Lov78]. First, we present a different proof authored by Bárány [Bár78].
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Definition 4.1. For vector a ∈ Sd, H(a) denotes the set of points in Sd that lie on the same side of h as a,
where h is the hyperplane orthogonal to a passing through the center of the sphere.

Theorem 4.2 (Gale). For nonnegative integers n and k, there exists a set V ⊂ Sk with 2n + k elements
such that |H(a) ∩ V | ≥ n for each a ∈ Sk.

Theorem 4.3 (Kneser–Lovász). If the n-subsets of [2n+k] subset are partitioned into k+1 classes, at least
one class will contain two disjoint n-subsets.

Proof. Construct a set V , |V | = 2n + k, as in Gale’s theorem. For the sake of contradiction assume there
exists a (k + 1)-coloring of the n-subsets of V . This yields a coloring of Sk where a point x has the color of
every n-subset in H(a) ∩ V ; by Gale’s theorem at least one exists.

Consider open sets of points of the same color; their union is Sk By version (iii) of Borsuk–Ulam on these
sets, there exists a pair of antipodal points x0,−x0 of the same color. The n-tuples from which the two
points acquired this coloring are disjoint because they lie on the disjoint hemispheres H(x0) and H(−x0),
and they are of the same color. □

Lovász’s own proof starts from a graph-theoretic formulation of Kneser’s conjecture.

Definition 4.4. The chromatic number χ(G) is the minimum number of colors needed to color the vertices
of G such that no two adjacent vertices are the same color.

Definition 4.5. A Kneser graph K(n, k) is the graph whose vertices are the k-element subsets of a set of
n elements where two vertices are connected by an edge iff their subsets are disjoint.

Theorem 4.6 (Kneser–Lovász, graph-theoretic). The chromatic number of K(2n+ k, n) is k+ 2. With an
alternate definition of variables, this is

χ(K(n, k)) = n− 2k + 2.

Proof. First, note that we can easily construct a coloring of K(2n + k, n) with k + 2 colors. Partition the
n-subsets of [2n+ k] into sets Ki, 1 ≤ i ≤ n+ k+1, such that a subset whose smallest element is i is placed
in class Ki. Then consider the classes

K1,K2, · · · ,Kk+1 and K0 = Kk+2 ∪Kk+3 ∪ · · · ∪Kn+k+1.

Any two elements in class Ki, 1 ≤ i ≤ k+ 1, share element i. Any two elements in K0 cannot be disjoint
because they are n-sets chosen from among |k + 2, k + 3, . . . , 2n+ k| = 2n− 1 elements.

Now, let’s work on the graph K(n, k) instead of K(2n + k, n), for convenience; any following references
to K, n, and k refer here. It remains to show that K(n, k) is not (n− 2k + 1)-colorable. First, we define a
certain kind of simplicial complex on K.

Definition 4.7. The neighborhood complex N (G) of a graph G is defined such that a set X of vertices of G
is in N if all x ∈ X are connected to some common vertex v.

We have that conn(N (K(n, k))) = n− 2k − 1.
Then, consider the following lemma.

Lemma 4.8. Given a graph G,

χ(G) ≥ conn(N (G)) + 3.

Since the complete graphKm is obviouslym-colorable, the statement that G ism-colorable is equivalent to
the statement that there is a graph homomorphism (a map f : V (G1) → V (G2) such that if x, y are vertices
that are connected in G, f(x) and f(y) are connected in G2) from G to Km. Thus N (G) and N (Km) are
homeomorphic, so there exists a continuous antipodal map f : Sconn(N (G)) → Sm−2. By Borsuk–Ulam (vi),
this means that k + 1 ≤ m− 2 =⇒ χ(G) ≥ conn(N (G)) + 3, as desired.

Finally,

χ(K(n, k)) ≥ conn(N (K(n, k))) + 3 = n− 2k + 2,

as desired. □
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5. Fair Divisions

This section concerns problems that involve the equal division of continuous and discrete measures that
are solved by Borsuk–Ulam.

First, we define some relevant language. Consider the analogous properties of length, area, and volume
in one, two, and three dimensions, respectively. We can extend this idea to any n dimensions.

Definition 5.1. The Lebesgue measure λ(S) where S ⊆ Rd is the standard assignation of size in d-
dimensional space.

For the purposes of this discussion, we consider the finite Borel measure.

Definition 5.2. A finite Borel measure µ on Rd is the restriction of the usual Lebesgue measure to a
compact subset of Rd.

Now, the idea of antipodal points in Borsuk–Ulam lends itself neatly to the idea of dividing something
fairly among two parties. Moreover, in the recurring spirit of this study, once we are able to find solutions to
the continuous versions of these problems (i.e. dividing a mass), we can extend them to the combinatorially-
phrased discrete analogues.

For our first problem, consider a ham sandwich consisting of the three masses of ham, cheese, and bread
(disregard the anatomy of a real-life ham sandwich, which usually uses two pieces of bread, for this problem).

Two friends wish to divide this sandwich among themselves with a single planar cut such that each of
them has an equal amount of each ingredient. Is this always possible?

It turns out that it is.

Theorem 5.3 (Ham sandwich). Let µ1, µ2, . . . , µd be mass distributions on Rd. There exists a hyperplane
h that divides Rd into two half-spaces h+ and h− such that

µi(h
+) = µi(h

−)

for i = 1, 2, . . . , d.

The example of the ham sandwich is the d = 3 case of the theorem. The proof is short.

Proof. For every vector v = (v0, v1, . . . , vd) ∈ Sd, we define the half-space h+ given v such that

h+(x) = {(x1, . . . , xd) ∈ Rd : v0 + v1x1 + · · ·+ vdxd ≥ 0}

Then over i we define fi : S
d → Rd such that

fi(v) = µi(h
+(v))

and f(v) = (f1(v), f2(v), . . . , fd(v)). By Borsuk–Ulam (i) there exists v0 such that f(v0) = f(−v0). Two
antipodal points correspond to half-spaces, so we are done. □

Corollary 5.4 (Ham sandwich, discrete). Let A1, A2, . . . , Ad be disjoint finite point subsets of Rd such that
at most d points of A1 ∪ A2 ∪ · · · ∪ Ad are contained in any hyperplane. Then there exists a hyperplane h
that bisects each Ai, where being bisected is defined as

(1) having exactly ⌊1
2 |Ai|⌋ points on each of h+ and h−, and

(2) having at most one point of Ai on h.

Our second problem considers the idea of splitting the multicolored beads on a necklace equally.

Definition 5.5. In Rd, the moment curve is the locus of points with Cartesian coordinates of the form
(t, t2, t3, . . . , td).

Theorem 5.6 (Necklace). Consider an open necklace consisting of stones of d colors with an even number
of stones of each color. Then we can split the necklace at d points into pieces that can be divided between
two people such that each gets the same amount of stones of each color.
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Example. Consider the following necklace.

Figure 5. d = 3.

Proof. Situate the necklace in Rd along the moment curve γ(t) = (t, t2, t3, . . . , td). Define Ai to be the set
of points coinciding with the locations of each bead of color i. Then by the ham sandwich theorem there
exists a hyperplane h that bisects each Ai, and since |Ai| is even, no stones are contained in the hyperplane.
Since any h cuts the moment curve at at most d places, we are done. □
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[Bár78] Imre Bárány. “A short proof of Kneser’s conjecture”. In: Journal of Combinatorial Theory, Se-
ries A 25.3 (1978), pp. 325–326. doi: 10.1016/0097-3165(78)90023-7. url: https://www.
sciencedirect.com/science/article/pii/0097316578900237.
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