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Abstract. Homomesy happens in dynamical algebraic combinatorics where average value
of some statistic is the same on every orbit of a combinatorial dynamical system. It was
introduced and systemized by Propp and Roby, and it was seen in context of rowmotion
and promotion on order ideals of posets, as can be seen in [2, 3]. This paper introduces
homomesy’s basic definition, gives a simple example on permutations, and then focuses
deeper by looking at it through toggle-groups for order ideals. We show rowmotion on
products of two chains and we demonstrate why the cardinality statistic on order ideals for
these posets is homomesic. At the end, we briefly cover piecewise-linear and birational lifts
of these actions.

1. Introduction

In combinatorics it’s essential to understand how large families of discrete objects behave
and how simple operations act on them. Often, we have an invertible map

τ : S → S

on a finite set S of combinatorial objects such as permutations, order ideals of a poset, Young
tableaux, etc. If we iterate τ , we get orbits that may often look quite complicated.

Homomesy is the observation that, in many such systems as we described, certain sta-
tistics f : S → R have the same average over every orbit of the action. At first this looks
coincidental, and it doesn’t make sense for a statistic to be so well behaved on each orbit
when the orbit structure itself can be wild. Propp and Roby noticed that this phenomenon
kept occurring, and so they named it a framework [2]. Since then, homomesy has become a
key organizing idea in dynamical algebraic combinatorics [3, 5].

This paper will begin by giving a precise definition of homomesy and a simple example on
permutations. Then we introduce toggles and the toggle group acting on order ideals of a
poset. We define rowmotion and explore a fundamental homomesy result on products of two
chains [2]. We also briefly describe piecewise-linear and birational analogues and mention
further directions of research [1]. Throughout this paper, all sets are finite, and all maps we
consider are bijections unless we explicitly state otherwise.

2. Starting Definition and Example

We begin with our basic definition. Let S be a finite set and τ : S → S be a bijection.
For x ∈ S, the orbit of x is

O(x) := {τ k(x) | k ∈ Z}
which is finite because S is finite. The orbits of τ partition S.
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Definition 2.1. We let S be a finite set, τ : S → S a bijection, and f : S → R a statistic.
We say that the triple (S, τ, f) is homomesic if there exists a constant c ∈ R such that for
every τ -orbit O ⊆ S we have

1

|O|
∑
x∈O

f(x) = c.

In this case we say that f is homomesic or c-mesic under the action of τ .

Since S is finite and the orbits of τ partition S, we know that there is a simple global
characterization of homomesy.

Proposition 2.2. Let S, τ , and f be as we described above. Then f is homomesic under τ
iff the average of f on every orbit equals the global average

1

|S|
∑
x∈S

f(x).

Proof. We write S =
⊔

i Oi as a disjoint union of orbits. Then

1

|S|
∑
x∈S

f(x) =
1∑
i |Oi|

∑
i

∑
x∈Oi

f(x).

If each orbit has the same average c, then
∑

x∈Oi
f(x) = c · |Oi| for all i, so the global average

is also c. On the other hand, if the average of every orbit equals the global average, then we
know all orbit averages are equal to each other, so f is homomesic. ■

2.1. A Permutation Example. We now offer a very simple but important example. Let
S = Sn be the symmetric group on {1, . . . , n}, which is viewed as permutations written in
one-line notation. We define τ : Sn → Sn by cyclic rotation

τ(σ1σ2 . . . σn) = σ2σ3 . . . σnσ1.

It is clear this is a bijection, and each orbit consists of the cyclic rotations of some word.
We then let f : Sn → R be the statistic that records the position of the value n, or

f(σ) = the position of n in the one-line notation of σ.

For example, if n = 4 and σ = 2413, then f(σ) = 3.

Proposition 2.3. The statistic f is homomesic under the rotation action τ on Sn with an
average value of n+1

2
.

Proof. We can fix a permutation σ ∈ Sn and look at its orbit under τ . As we cyclically
rotate the entries, we see that the value n visits each position 1, 2, . . . , n exactly once before
returning to its starting point. Thus, along the orbit O of σ, we have

{f(x) | x ∈ O} = {1, 2, . . . , n}
as multisets, which means that the orbit-average of f is

1

n

n∑
k=1

k =
n+ 1

2
,

and is independent of the orbit.
Conversely, by symmetry, the global average of f over all of Sn is also n+1

2
since in a

uniformly random permutation, each position is equally likely to contain n. Finally, by
Proposition 2.2, f is homomesic with average n+1

2
. ■



3

This example serves as a model for much more complicated situations such as a natural
combinatorial action, a simple statistic, and a rigid orbit-average.

3. Toggles, order ideals, and the toggle group

Some of the best examples of homomesy arise from actions on order ideals of a poset. So,
we now introduce the basic language of toggles and the toggle group, following Striker and
Williams [4, 6].

Definition 3.1. Let P be a finite poset. An order ideal of P is a subset I ⊆ P such that

x ∈ I and y ≤ x =⇒ y ∈ I.

We write J(P ) for the set of all order ideals of P .

We can think of order ideals of P as downward-closed subsets in the Hasse diagram.
Whenever a point is in the ideal, everything below it must also be included in the ideal. For
each element p ∈ P , we define an involution tp on J(P ), called the toggle at p.

Definition 3.2. For p ∈ P , the toggle tp : J(P ) → J(P ) is defined as

tp(I) =


I ∪ {p} if p /∈ I and I ∪ {p} ∈ J(P )

I \ {p} if p ∈ I and I \ {p} ∈ J(P )

I otherwise

We are able to verify that tp is an involution since t2p = id. The toggles generate a subgroup
of the permutation group of J(P ).

Definition 3.3. The toggle group of P is the subgroup of the symmetric group on J(P )
generated by the toggles {tp : p ∈ P}. We denote it with T (P ).

Compositions of toggles cause many interesting dynamical systems on J(P ). However,
one very important element of the toggle group that we will explore is rowmotion.

4. Rowmotion and Homomesy on Products of Two Chains

We let P be a finite poset. There are numerous equivalent ways to define rowmotion on
J(P ). However, we use the following combinatorial description (for example see [3, 5]).

Definition 4.1. Let P be a finite poset. For an order ideal I ∈ J(P ), we define

Row(I) := the order ideal that’s generated by the minimal elements of P \ I

The map Row : J(P ) → J(P ) is called rowmotion.

In other words, to get Row(I), we look at which elements of P can be added to I and fill
in everything below them to get a new order ideal.

Cameron and Fon-Der-Flaass showed that we can also express rowmotion as a product of
toggles taken in a certain order, or as a distinguished element of the toggle group T (P ). The
later work of Striker and Williams places this in a broader framework and relates rowmotion
to another toggle-group element called promotion [4, 6]. This toggle-group perspective is
essential in understanding and many homomesy proofs.
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4.1. Products of Two Chains. The posets where homomesy for rowmotion was first prop-
erly studied are products of two chains. We fix positive integers a, b and let

P = [a]× [b]

with partial order

(i, j) ≤ (i′, j′) ⇐⇒ i ≤ i′ and j ≤ j′.

We can picture P as an a× b grid of lattice points ordered southwest to northeast.
The order ideals of [a]× [b] can be visualized as Young diagrams or lattice points that fit

inside an a×b rectangle. Each order ideal translates to a monotone path from the southwest
corner to the northeast corner, and adding or removing a box means toggling an element of
the poset. A fundamental homomesy result of Propp and Roby explains that the cardinality
statistic on J([a]× [b]) is homomesic under rowmotion.

Theorem 4.2 (Propp–Roby). Let P = [a]× [b] and let Row : J(P ) → J(P ) be rowmotion.
Consider the statistic

f(I) = |I|
with I ∈ J(P ). Then (J(P ),Row, f) is homomesic, meaning the average size of an order
ideal along any rowmotion orbit equals to

1

2
· |P | = ab

2
.

In other words, if we follow an orbit of rowmotion and take note of the sizes |I| of the
order ideals we see, the average will always be ab

2
, regardless of whichever orbit we started

with. We only sketch the proof here. For the full proof and details see [2, 3]. The main
idea is to track how often each element p ∈ P occurs in an order ideal as we move along a
rowmotion orbit.

We first fix an element p ∈ P and consider the indicator statistic

fp(I) =

{
1 if p ∈ I

0 otherwise

We can write the size statistic as

f(I) = |I| =
∑
p∈P

fp(I).

Thus, to prove that f is homomesic, it is enough to show that each fp has average
1
2
on every

orbit. Summing over p will then give us an average of |P |
2
.

Propp and Roby analyze how the set p belongs in the current ideal changes when we
apply rowmotion. In the toggle-group description, rowmotion can be written as a product
of toggles that is taken in a linear extension of the poset. For P = [a]× [b], there is a high
degree of symmetry since for each element p, there is also a complementary element p′ such
that along an orbit, p and p′ appear in a balanced type of way. This then leads us to the
fact that over the orbit, p is present exactly half of the time.

We can formalize this argument in several ways. It can be done through explicit com-
binatorial pairing along orbits, through piecewise-linear or birational lifts [1], or through
representation-theoretic interpretations. Of course, the outcome is the same in that the av-

erage of fp on every orbit is 1
2
, so the average of |I| is |P |

2
on every orbit, proving Theorem 4.2.
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5. Piecewise-linear, Birational Rowmotion and Future Directions

A very shocking aspect of rowmotion and homomesy is that they extend beyond just the
combinatorial setting. Einstein and Propp [1] constructed piecewise-linear and birational
analogues of rowmotion that act on real-valued labelings of a poset. In these settings,
we see how combinatorial statistics are replaced by rational functions, and the homomesy
phenomenon continues.

Roughly speaking, we can look at the combinatorial rowmotion on J(P ) as a tropical
shadow of more general dynamical systems on RP or on fields of rational functions. The
birational version of rowmotion satisfies identities that, when specialized or tropicalized,
recover the combinatorial homomesies on order ideals. This brings dynamical algebraic
combinatorics to cluster algebras, total positivity, and other parts of algebraic geometry,
allowing for some of the most elegant connections.

There are many more examples and generalizations of homomesy. For example, there is
homomesy of statistics on standard Young tableaux under promotion and evacuation. A more
practical one is Homomesy for actions on parking functions, plane partitions, and alternating
sign matrices. One of the most surprising is homomesy’s connections to representation theory
and to cyclic sieving phenomena. Surveys such as [3, 5] give a more general look onto the
field and lists many more open problems.

Homomesy shows us how even when the orbit structure of a combinatorial dynamical
system is complicated, certain statistics are able to behave rigidly, their average remaining
constant across all orbits. Look at this using the toggle-group and the study of rowmotion
on products of chains gives us a clean and accessible entry point into this phenomenon. Also,
piecewise-linear and birational lifts show the deeper algebraic structure at its work. More
broadly, homomesy serves to show how ideas from dynamics, algebra, and combinatorics
intersect. A simple definition leads us to many rich examples, unexpected symmetry, and
ongoing research directions.
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