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Abstract

After a quick review of terminology, we define an r-differential poset.
An r-differential poset is a poset P that satisfies three properties: P is
locally finite, graded, and has a 0 element, whenever z,y € P for z # y and
there are k elements covered by both x and x, there are also k elements
covering both = and y, and if x € P covers k elements of P, then x is
covered by x + r elements of P. If P is r-differential for some r, we say
that P is a differential poset. We then familiarize ourselves with the
connection to calculus by giving a different, significantly longer definition.
This new definition pairs each differential poset with two operators. After
proving the two definitions are equivalent, we look at multiple examples
of differential posets: the Young poset and the r-Fibbonacci poset. Next,
we will see some results regarding differential posets, including 1.2 - 1.4
from R.P Stanley’s first paper on the subject. Finally, we look at a few
open problems regarding differential posets.

1 Introduction

Definition 1. A poset P is some set paired with a binary relation < such that
x<x forallze P, x <y and y < x together imply x =y, and x <y and y < z
together imply x < z.

Definition 2. Let P be a poset. We say that x € P covers y € P if y < x and
there is no z € P such that y < z < x.

Definition 3. Let P be a poset. We say that P is locally finite if every interval
{z|z <z <y} for x,y € P is finite.

Definition 4. Let P be a poset. We say that P is graded if there is an order-
preserving injective function from P to 7Z.

Definition 5. Let r be some positive integer. The poset P is r-differential if P
18 locally finite, is graded, and has a minimal element 0.

1. If x,y € P, x #y, and there are k elements of P covered by both x and vy,
then there are also k elements covering both x and y.
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2. If x € P covers exactly k elements of P, then x is covered by exactly k +r
elements of P.

3. If P is r-differential for some r, we say P is a differential poset.

Suppose for the sake of contradiction that k& > 2. Then there are two elements
of P that have at least two elements covering both of them, hence these two new
elements have k > 2. We continue to repeat this process forever, contradicting
the fact that there is a 0 element.

Definition 6. Let P be a locally finite poset such that C~ (x) (the set of elements
of P covered by x) and C* (z) (the set of elements of P covering z) are finite
forallxz e P. Let V 2 P be a vector field with P as a basis. We define functions

U and D as:
Uzx = Z Y
yeC~(z)
Dz = Z Y
yeC*(z)

We extend U and D to all of K to get linear transformations U : V =V and
D:V->V.

Definition 7. Let P be a locally finite graded poset with a 0 element, such
that every rank has finitely many elements. We say the P is r-differential if
DU -UD =rl for some K.

Let R be the typical poset on the real numbers. In fact, this is a toset, or
totally ordered set. These are posets in which, for every z,y, either x < y or
y < z. Let R be the poset of functions on the real numbers, in which f < g
if f(z) < g(x) for all x € R. Now, let the operator U multiply by z" and
let the operator D give the nth derivative with respect to . Now we have
DUf = %xf(x) = f(x)+zf' (x) = If + UDf for r = 1. This is equivalent

to DU - UD = rl for r = 1, implying R is 1-differential. We now see that 1-
differential posets are a generalization of calculus, and r-differential posets are
a further generalized form.

Theorem 1. Definition 1 and Definition 3 are equivalent.

Proof. Let x € P. Now DUz = ) c,y where ¢; = #(C* () nC" (y)), and
y

UDz =" ¢,y where ¢; = #(C™ () nC™ (y)). So DU -UD =l if and only if

Y
#C ()nC (y)=#(C"(x)nC"(y)) and C™ (z)+C~ (z) for all z # y € P.
But these are the exact conditions for P to be r-differential. O

2 Examples
Some familiar posets turn out to be differential. One easy example, originally

formulated by Alfred Young, is the Young lattice, consisting of all integer par-
titions ordered by inclusion of Ferrers diagrams or Young diagrams.
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Figure 1: Young’s Lattice

Proposition 1. Let L be a lattice satisfying (1) and (8) from Definition 1.
Now, L is r-differential if and only if L is modular.

Proof. G. Birkhoff observed in Lattice theory that a locally finite lattice is mod-
ular if and only if the following condition is satisfied: If x € P covers exactly k
elements of P, then z is covered by exactly k +r elements of P. But this is (2)
from Definition 1. 0

The Young lattice, which satisfies (1) and has been observed by Richard
P. Stanley to satisfy (3), is distributive, and thus modular. This means it is
r-differential. Another example, the Z (r) poset, is defined as the set of (finite)
words in some alphabet A, = {1;...1,,2}. wy covers wy if we obtain wsy either
by changing the last 2 in wq’s initial string of 2s to a 1; or by deleting the first
1; from ws.

Theorem 2. Z (r) is r-differential.

Proof. The 0 element is the empty word, and Z (r) is graded by the sum of the
"types” of the letters, where the type of 1; is 1 and the type of 2 is 2. There
are finitely many strings of each grading, so Z (r) is locally finite.

We will now check condition 2. Take x,y € Z(r) so that  and y cover a unique
element z. We let z consist of k > 0 consecutive 2s followed by a 1; and then the
string s € Z (r). It’s possible that z does not contain any 1;, but this changes
very little.

We have two cases now:

1.z =215 and y = 21,251,

2. 1 =2"1,2""1;5 and y = 21,25 1,5
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In either case, we take w = 28*11;5 so that w is the unique element covering both
z and y. Similarly, if there is an element covering x and y, we can construct
an element covered by both. Now we check condition 3. If the initial string of
2s of = has length k, we could have obtained this initial string by replacing any
1; in any of these positions with a 2, in kr ways; if the initial string is followed
by some 1;, then there’s one more way we could have obtained x, namely from
inserting this 1,. Hence there are either kr or kr + 1 elements covered by =,
depending on whether the string has any 1s or not. To obtain strings covering
x, we can place a 1; between any two 2s or at the beginning or end of the string
of 2s, in (k+1)r ways, and if z has any 1s, we can also replace the initial 1
with a 2. Hence there are either (k+ 1) r or (k+ 1) r+1 words covering z. Thus
Z (r) is r-differential. O

3 Concepts

There are many useful terms regarding differential posets. Among these are the
r-differential poset up to rank n and the Hasse walk.

Definition 8. Let P be a finite graded poset of rank n that satisfies the first
two conditions for being an r-differential poset, and also satisfies the third for
any element x of rank less than n. We call such a poset an r-differential poset
up to rank n.

Definition 9. A Hasse walk of length n on a poset P is a sequence xq...x, of
elements of P so that for each i with0<i<n-1, z;+1e€C" (zi) uC™ (x1).

Theorem 3. If P is an r-differential poset, then DP = (U +1) P.

Proof. If DP = Y a,®, then a, = #C* (z). If (U+r)P =) byx, then a, =
r + #C” (x). The result follows from the third property in the definition of
r-differential. O

Corollary 1. If P is an r-differential poset, then for any f(U) € K [[U]] we
have Df (U) = rf"(U) + f(U) D. Moreover, if f(U) defines an element of
End (K P), we have Df (U) P = (rf'(U)+ (U +7r) f(U)) P.

Proof. By linearity and continuity, it suffices to assume f(U) =U", n>0. The
proof is then straightforward. O

4 Open Problems

Problem 1. Characterize all r-differential posets.

D. Wagner has described a very general method for constructing differen-
tial posets that make it unlikely that Problem 1 has a reasonable answer. The
following special case of Wagner’s construction suffices to show that, for each
r, there are infinitely many irreducible r-differential posets: Let P be a graded
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poset of rank n. Define the reflection extension P* of P to be the poset of rank
n+1 which coincides with p for ranks < n and has an element z* € P!, for each
x € P,_1, with the cover relations x* covers y € P, if y covers x € P,,_1. Define
E, (P) be the poset obtained from P* by adjoining 7 additional elements above
each element z € P,,.

If P satisfies properties (1) and (2) from the definition of r-differential for x
and y with rank < n, and property (3) for z of rank < n, then we call P a partial
r-differential poset of rank n. Note that all partial r-differential posets of rank
n are r-differential posets up to rank n + 1, but the converse is not true.
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