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1 Overview
The aim of this paper is to demonstrate the use of topological methods as a viable way of
problem-solving in combinatorics. The most impressive result of this is a proof of the Kneser
Conjecture that involves the Borsuk–Ulam Theorem. This paper will present a simplified
version of the proof involving the distrbution of points along an 𝑚-dimensional sphere.

First, the idea is to motivate a connection between combinatorics and topology by presenting
simplical complexes as both a graph-theoretical and a topological object.

2 Simplical Complexes
Intuitively, a simplical complex is a topological object formed by gluing together building
blocks, which may be lines, points, faces, or polyhedra, in a way that follows certain intuitive
rules. These building blocks are called “simplices.” The idea is to topologically represent
shapes and objects for the purposes of geometric modeling and interpretations, but from
a purely combinatorial perspective, their aim is to emphase such ideas as connectivity and
invariance.
Definition 2.1. A simplex is an object designed to generalize the notion of a triangle or
tetrahedron to arbitrary dimensions. It represents the “simplest” possible polytope in each
dimension.

So, a 0-dimensional simplex is a point, a 1-dimensional simplex is a line segment, a 2-
dimensional simplex is a triangle, a 3-dimensional simplex is a tetrahedron, and so on.

More specifically, a 𝑘-simplex is a 𝑘-dimensional polytope that is the convex hull of its vertices,
and are equivalent up to their dimension. So, simplices can be the basic building blocks of
geometric constructions, functioning as lines, faces, and polyhedra. However, we want to be
able to put simplexes together into a coherent object, to use them as building blocks. For
this, we must present another definition.
Definition 2.2. A simplical complex is an object consisting of a set of simplices and a set of
“faces,” or convex hulls that are, themselves, simplices, formed by these simplices, such that
the nonempty intersection of two simplices is a face of both simplices.
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More general spaces like CW complexes tend to supercede these, but the connection between
simplical complexes and graphs is clear. In fact, we can redefine simplical complexes to give
a more direct connection to graphs. The original definition implies heavily some geometric
significance, but we can define the abstract simplical complex, which removes this significance.

Definition 2.3. An abstract simplical complex is a family of sets that is closed under taking
subsets; i.e. every subset of a set in the family is in the family.

This aligns with the definition for a regular simplical complex, as every subset of objects in a
simplical complex is either a simplex or a face.

Now that we have an abstract definition for a simplical complex, it becomes clear how we can
associate a simplical complex to a graph.

Definition 2.4. The neighborhood complex of a graph 𝐺, denoted 𝑁(𝐺), is the simplical
complex formed by the subsets of the neighborhoods of all vertices in 𝐺. (The neighborhood
of a node in a graph is the set of all points adjacent to the node, including the node itself.)
Each point in the simplical complex is a subset of vertices that are neighbors in the original
graph.

The primary use of neighborhood complexes in combinatorics is in graph colorings, as the
connectivity of a neighborhood complex can provide a lower bound on the chromatic number
on a graph. We will see an example of this in section 4. For now, we will view an example of
topological methods being used to solve a coloring problem of a different nature.

3 Hex
In the game Hex, two players play on a finite grid of hexagons. One colors a hexagon red
every turn, and the other blue. Once every tile is colored, the red player wins if there is a
path of red hexagons connecting the top and bottom of the grid, and the blue player wins if
there is a path of blue hexagons connecting the left and right of the grid.

To demonstrate an example of topological methods being pertinent to combinatorial problem
solving, we will demonstrate how Hex can be proven to never have a draw. Clearly, the game
can have at most one winner, so it suffices to prove that it must always have a winner. To
prove this, we will first invoke a theorem in algebraic topology that will go without proof.

Theorem 3.1 (Brouwer’s Fixed Point Theorem). Let 𝐵2 be a unit disk in ℝ2, and
𝑓 ∶ 𝐵2 → 𝐵2 a continuous map. Then, there exists 𝑥 ∈ 𝐵2 such that 𝑓(𝑥) = 𝑥.

Essentially, such a mapping on the unit disk must have at least one fixed point.

Theorem 3.2. The game Hex always has a winner.
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Figure 1: An 11x11 game of Hex in which blue has won.

Proof. We can consider a Hex board as a graph with blue of red hexagons as vertices and
common sides as edges, giving us a graph in which a path from left to right of blue vertices
constitutes as a win for blue, and a path from top to bottom of red verices constitutes as a
win for red. Now, for the sake of contradiction, assume there are no winners in a completed
game of Hex. Define the following:

• 𝑅0: The set of red vertices which can be reached from a path connected to the bottom

• 𝑅1: Red vertices not in 𝑅0

• 𝐵0: Blue vertices which can be reached from the left side by a green path

• 𝐵1: Blue vertices not in 𝐵0.

Additionally, define 𝑒1(𝑣) and 𝑒2(𝑣) as a rightward shift one vertex (parallel to the top and
bottom) and an upward shift one vertex (parallel to the left and right) respectively. Now, we
can define the following function:

𝑓(𝑥) ∶=

⎧{{
⎨{{⎩

𝑒2(𝑣) 𝑣 ∈ 𝑅0
𝑒−1

2 (𝑣) 𝑣 ∈ 𝑅1
𝑒1(𝑣) 𝑣 ∈ 𝐵0
𝑒−1

1 (𝑣) 𝑣 ∈ 𝐵1

This function should be well-defined by our assumption; it should not lead to any vertex
shifts that go off the board. Now, consider any triangle 𝑇 on the board 𝐺 with vertices 𝑣1,
𝑣2, and 𝑣3 serving as the convex hull of the triangle. Every point 𝑥 in the triangle can be
written uniquely as 𝑥 = ∑ 𝑥𝑖𝑣𝑖, where 𝑥𝑖 ≥ 0 and ∑ 𝑥𝑖 = 1. We can form a continuous linear
extension of 𝑓 onto 𝑇 , defining 𝑓(𝑥) ∶= ∑ 𝑥𝑖𝑓(𝑣𝑖). As a union of triangles, 𝐺 is homeomor-
phic to 𝐵21, so 𝑓 maps 𝐵2 to 𝐵2, and thus 𝑓 has a fixed point 𝑥 ∈ 𝐺. Let 𝑥 = ∑𝑖 𝑥𝑖𝑣𝑖 for

1abuse of notation; this refers to the unit disk in ℝ2.

3



A Brief Summary of Topological Combinatorics

some triangle 𝑣, and define 𝜖𝑖 ∈ {±𝑒1 ± 𝑒2}, so 𝑓(𝑣𝑖) = 𝑣𝑖 + 𝜖𝑖. Then, 𝑓(𝑥) = 𝑥 implies that
∑𝑖 𝑥𝑖(𝑣𝑖 + 𝜖𝑖) = ∑𝑖 𝑥𝑖𝑣𝑖, so ∑𝑖 𝑥𝑖𝜖𝑖 = 0.

Without loss of generality, say 𝑥1 > 0 and 𝜖1 = 𝑒1. Then one of the other 𝜖𝑖 must be −𝑒1,
WLOG say 𝜖2. Thus, one of 𝑣1 belongs on 𝐵0 and the other on 𝐵1, which is impossible as
both are vertices of the same triangle.

4 The Kneser Conjecture
Historically, the Kneser conjecture, posed by Kneser in 1955, was proven by Lovász in 1978
with a graph-theoretical proof that involved neighborhood complexes. In particular, Lovász’s
proof showed that the Kneser graph is not 𝑘 + 1 colorable.

Theorem 4.1 (Kneser Conjecture). If the collection of all 𝑛-element subsets of a set of
size 2𝑛 + 𝑘 is divided into classes such that no two sets in the same class are disjoint, at least
𝑘 + 1 classes are needed.

Definition 4.2 (Kneser Graph). The Kneser graph 𝐾𝐺(𝑛, 𝑘), is the graph whose vertices
correspond to the 𝑛-element subsets of a set of 2𝑛 + 𝑘 elements. Two nodes are connected iff
the two corresponding sets are disjoint.

Lovász’s proof invokes the Borsuk-Ulam theorem along with a theorem by D. Gale on the
even distrbution of points around a sphere. We will show a simpler version by Greene that
does not use Gale’s result.

Both versions of the theorem invoke the following result referred to as the Lusternik–Schnirelmann–
Borsuk theorem, or LSB theorem.

Theorem 4.3 (LSB Theorem). For any covering of 𝑆𝑚, the unit sphere in 𝑚 dimensions,
with 𝑚 + 1 or fewer closed sets, one of the sets must contain a pair of antipodes, or points
with maximal distance from each other.

First, we require a generalization of the LSB theorem.

Lemma 4.4. If 𝑆𝑚 is covered with 𝑚 + 1 sets, each of which is either open or closed, then
one of the sets contains a pair of antipodes.

Proof. We will proceed by induction on the number of closed sets 𝑡 in the cover of 𝑆𝑚. For
the pbase case of 𝑡 = 0, we have 𝑆𝑚 covered by open sets 𝑈1, … , 𝑈𝑚+1. Fix a positive number
𝜆 such that for all 𝑥 ∈ 𝑆𝑚, the closed ball 𝐵̃(𝑥, 𝜆) is contained in some 𝑈𝑗. It follows by
compactness of 𝑆𝑚 that there is a finite family of points {𝑥𝑖} such that the set of open balls
𝐵(𝑥𝑖, 𝜆) cover 𝑆𝑚. For each 𝑗, let 𝐹𝑗 denote the union of those 𝐵̃(𝑥𝑖, 𝜆) contained in 𝑈𝑖. We
have that 𝐹𝑗 is closed, 𝐹𝑗 ⊂ 𝑈𝑗, and the 𝐹𝑗 cover 𝑆𝑚. Therefore, the LSB theorem implies
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that one of the 𝐹𝑗 contains a pair of antipodes. Hence, one of the 𝑈𝑗 contains a pair of
antipodes as well.

Now, we proceed by strong induction. Assume that 0 < 𝑡 < 𝑚 + 1 and the lemma holds for
fewer than 𝑡 closed sets, so we can prove it holds for 𝑡 sets. Let 𝐶 be a cover of 𝑆𝑚 with
𝑚 + 1 sets, where exactly 𝑡 are closed and the rest are opne. Given a fixed closed set 𝐹 ∈ 𝐶,
suppose it does not contain a pair of antipodes. Hence, the diameter of this set is less than
2; define its diameter as 2 − 𝜖 for some 𝜖 > 0. Let 𝑈 denote the open set of all points in 𝑆𝑚

whose distance from 𝐹 is less than 𝜖/2. Then, (𝐶\{𝐹}) ∪ {𝑈} s a cover of 𝑆𝑚 with 𝑚 + 1
sets, where exactly 𝑡 − 1 are closed and the rest are open. By our inductive hypothesis, some
set in thie cover must contain a pair of antipodes. But by construction, 𝑈 does not contain
such a pair, and thus a set in 𝐶 must contain a pair of antipodes, as desired.

Now, we are able to contain Kneser’s conjecture. Define 𝐻(𝑎) as the set {𝑥 ∈ 𝑆𝑚 ∣ 𝑎𝑥 > 0}
as the open hemisphere centered at 𝑎, and 𝑆(𝑎) as the boundary of 𝐻(𝑎), or the set {𝑥 ∈
𝑆𝑚 ∣ 𝑎𝑥 = 0}. Recall that Kneser’s conjecture states that if all 𝑛-element subsets of a 2𝑛 + 𝑘
element set are partitioned into 𝑘 + 1 classes, at least one class must contain a pair of disjoint
subsets.

Proof. Distribute 2𝑛 + 𝑘 points on 𝑆𝑘+1 such that no 𝑘 + 2 points lie on a great 𝑘-sphere.
Now, partitin the 𝑛-element subsets of these points into 𝑘 + 1 classes 𝐴1, … , 𝐴𝑘+1. For
𝑖 ∈ {1, … , 𝑘 + 1}, let 𝑈𝑖 denote the open set of all points in 𝑆𝑘+1 such that 𝐻(𝑎) contains
an 𝑛-element set the class 𝐴𝑖. We define 𝐹 = 𝑆𝑘+1\(𝑈1 ∪ … ∪ 𝑈𝑘+1) as a closed set. The set
𝐹 alond with the 𝑈𝑖 are 𝑘 + 2 sets which cover 𝑆𝑘+1, so by our lemma, one of the sets must
contain a pair of antipodes ±𝑎. If this set is one of the 𝑈𝑖, then 𝐻(𝑎) and 𝐻(−𝑎) contian
𝑛-element subsets in the class 𝐴𝑖, and are clearly disjoint. Therefore, we just need to finish
by showing that 𝐹 cannot contain a pair of antipodes. But this is clear, as if it did, 𝐻(𝑎)
and 𝐻(−𝑎) would both contian fewer than 𝑛 points from the original (2𝑛 + 𝑘)-element set.
This means that at least 𝑘 + 2 points lie on the great 𝑘-sphere 𝑆(𝑎), which contradicts the
distibution of our points.
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