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Abstract

This expository paper seeks to present a basic overview of Young tableaux theory — its combinatorial
mechanisms, connections to building irreducible representations of the symmetric group, and applications
to combinatorial objects discussed during class. This paper assumes familiarity with topics covered during
class as well as basic group/representation theory concepts.

1 Overview

Young Diagrams and Tableaux occupy a central position in contemporary algebraic combinatorics. The
Ferrers-board-like diagram, introduced in 1900 by Alfred Young to visually encode an integer partition and
“upgraded” by filling its boxes with elements of [n], became the indexing object for the representation
theory of Sn. Since then, the importance of Tableaux has expanded far beyond Symmetric-Group Theory:
counting the number of linear extensions of certain posets, in the underlying combinatorics of classical
numbers (Eulerian, Catalan Numbers), the famous Robinson-Schensted-Knuth correspondence, and even in
classifying characteristics of fundamental particles in physics.

This universality arises naturally from the study of symmetry : In mathematics, whenever we study
structures with inherent symmetries (groups, algebras, categories, operators), it is inevitable that we study
their representations. Then, in the process of decomposing these representations (which is how we study
them), we can expect to encounter objects that encode stability under symmetry (the tableaux). In other
words, symmetric objects can be broken down into symmetric coordinates, and Young tableaux form a
particularly natural coordinate system.

In this paper, the symmetric object in question is the symmetric group Sn. Appropriately enough, we
will “break it down” for study in the lens of Young tableaux theory and hint at further applications to
other objects (posets). For those interested in a more comprehensive read, you may wish to take a look at
Sagan: The Symmetric Group [4] (specifically for Sn) or Fulton: Young Tableaux [1] (a more comprehensive
treatment of tableaux theory).
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2 The Young Tableaux

2.1 Partitions and Young Diagrams

We start by introducing the basic combinatorial objects that underlie everything in this paper.

Definition 2.1. Recall that a partition of a positive integer n (denoted by λ) is a weakly decreasing sequence
of positive integers

λ = (λ1 ≥ λ2 ≥ · · · ≥ λk),

such that λ1 + · · · + λk = n. We write that “λ ⊢ n” if λ partitions n and call |λ| = n the size of λ. The
numbers λi are called the parts of the partition. △

To each partition we associate a diagram:

Definition 2.2. The Young diagram (or shape) of a partition λ = (λ1, . . . , λk) is a left–justified array of
boxes with λi boxes in row i, for i = 1, . . . , k. Throughout this paper we use the convention where row 1 is
at the top, and row numbers increase as we go down. △

Example 2.3. For n = 4 the possible partitions and their Young diagrams are

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

For instance, the partition λ = (3, 1) ⊢ 4 has Young diagram

and the partition λ = (2, 1, 1) ⊢ 4 has Young diagram ◦

2.2 The Standard and Semi-standard Young Tableaux

Young diagrams become more interesting when we start filling the boxes with numbers.

Definition 2.4. Let λ ⊢ n. A Young tableau of shape λ is a Young diagram of shape λ whose boxes are
filled with positive integers. △

Two special families of such tableaux will play a central role.

Definition 2.5. A standard Young tableau (abbreviated as SYT) of shape λ ⊢ n is a Young tableau of shape
λ whose boxes are filled with the numbers 1, 2, . . . , n in such a way that

• the entries increase strictly along each row from left to right;

• the entries increase strictly down each column from top to bottom.

△

Definition 2.6. A semistandard Young tableau (SSYT) of shape λ is a Young tableau whose entries are
positive integers such that

• the entries are weakly increasing along each row from left to right;

• the entries are strictly increasing down each column.

No restriction is placed on which positive integers may appear, or how many times. △
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Example 2.7. Take λ = (3, 1) ⊢ 4. Then

1 2 4

3

is a standard Young tableau of shape (3, 1), while

1 1 4

3

is semistandard but not standard, since the number 1 is repeated. ◦

SYTs are the basic combinatorial objects that will later encode dimensions of certain representations of
the symmetric group.

2.3 A Nice Combinatorial Result

To state one of the key results, we need the notion of a hook.

Definition 2.8. Let λ be a partition and let (i, j) denote the box in row i and column j of the Young
diagram of λ. The hook of the box (i, j) consists of

• the box (i, j) itself,

• all boxes in the same row to the right of (i, j),

• and all boxes in the same column below (i, j).

The hook length h(i, j) is the number of boxes in this hook. △

Example 2.9. Consider λ = (3, 2) ⊢ 5. If we label the boxes with their hook lengths, we get

4 3 1

2 1

For instance, the top-left box (1, 1) has hook length 4, because its hook consists of (1, 1) itself, 2 boxes to its
right, and one box below. ◦

For each partition λ ⊢ n, let fλ denote the number of standard Young tableaux of shape λ. The following
theorem gives a beautiful closed formula for fλ in terms of hook lengths.

Theorem 2.10 (Hook Length Formula). Let λ ⊢ n. Then the number of standard Young tableaux of shape
λ is

fλ =
n!∏

(i,j)∈λ h(i, j)
,

where the product runs over all boxes (i, j) in the Young diagram of λ. ⋆

We will present a rough outline of the proof; there are several other different combinatorial proofs in
the literature (for instance, via q-analogues [2] or the RSK correspondence [3]). Instead, we emphasize the
interpretation:

Remark 2.11. For each partition λ ⊢ n, the quantity fλ counts standard Young tableaux of shape λ. Later,
we will see that the same number fλ will appear as the dimension of a certain representation of the symmetric
group Sn. ⋄
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Proof sketch. We sketch a combinatorial proof following the probabilistic Greene–Nijenhuis–Wilf “hook
walk” method [6].

Step 1: Define the hook walk. Given a cell (i, j) in the Young diagram of λ, its hook consists of the cell
itself together with all cells to its right in the same row and all cells below it in the same column. From any
cell, the hook walk moves uniformly at random to one of the cells in its hook (right or down), and the walk
always eventually terminates at a corner (a cell of hook length 1).

Step 2: Use the hook walk to insert entries. To build a standard Young tableau, insert the labels
n, n − 1, . . . , 1 in that order. For each k, perform a hook walk on the current diagram and place k in the
terminal corner cell, then remove that cell from the diagram.

Step 3: Every standard Young tableau arises with equal probability. A calculation shows that the
probability the hook walk terminates at a particular corner cell is exactly the reciprocal of its hook length
suitably normalized. In other words:

Pr(T ) =
1

n!

∏
(i,j)∈λ

1

h(i, j)

for every standard Young tableau T of shape λ. When inserting n, n − 1, . . . , 1, the hook-length factors
telescope, implying that every standard Young tableau of shape λ is produced with the same probability.

Step 4: Compute the total probability. Since the algorithm produces every standard Young tableau
once,

1 =
∑
T

Pr(T ) = fλ · 1
n!

∏
(i,j)∈λ

1

h(i, j)
.

Solving for fλ gives

fλ =
n!∏

(i,j)∈λ h(i, j)
,

which is the hook length formula, as desired.
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3 Representation Theory Preliminaries

In this section, we recall the basic language of representation theory we will need for sections 4 and 5, where
we explore the importance of tableaux in the representation theory of the Symmetric Group Sn. We will
work over the field of complex numbers, denoted by C.

But before getting into the details, it helps to first have a mental image of what we are trying to
accomplish:

3.1 The Big Picture

So far, Young diagrams and tableaux have been purely combinatorial: we defined shapes λ ⊢ n, counted
the standard Young tableaux (SYT) of each shape via the hook length formula, and called this number fλ.
In the rest of the paper we attempt to explain how and why these same shapes and numbers control the
representation theory of the symmetric group Sn.

Proposition 3.1. The partitions λ ⊢ n index all irreducible representations of Sn. Moreover, for each λ
there is an irreducible Sn–module Sλ whose dimension is exactly

dim(Sλ) = fλ.

■

Sections 3, 4, and 5 are devoted to unpacking this statement.

Roughly speaking, a (complex) representation of a group G is a way for G to act on a vector space by
linear transformations, so that group elements can be “seen” as matrices. Some representations split as direct
sums of smaller ones; those that do not split further are called irreducible. Over C, every finite-dimensional
representation of a finite group is a direct sum of irreducibles (Maschke’s theorem 3.9).

In our story, the symmetric group Sn acts naturally on many sets built from [n], such as the set of all
tableaux of a fixed shape with entries 1, . . . , n. From such a set X we build a permutation representation
CX whose basis vectors are indexed by X and on which Sn acts by relabeling the underlying combinatorial
objects. This gives us a large, concrete representation to work inside.

Here is the roadmap:

• Section 3 reviews the minimal representation-theoretic background we need: group actions, permu-
tation representations, irreducible representations, and Maschke’s theorem.

• Section 4 starts from the permutation representation on tabloids of a fixed shape λ and uses Young
symmetrizers to cut out a smaller submodule Sλ, called the Specht module. We show that each Sλ is
irreducible, and that every irreducible representation of Sn arises in this way from a unique partition
λ ⊢ n.

• Section 5 connects back to the combinatorics of tableaux. Using a branching rule and Young’s lattice,
we prove that

dim(Sλ) = fλ,

so the hook length formula computes the dimensions of the irreducible representations of Sn.

Thus partitions and Young diagrams do not just organize tableaux; they also label all irreducible repre-
sentations of Sn, with f

λ recording their dimensions.

Now, to the specifics:
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3.2 Group Actions and Permutation Representations

We will promptly begin with group actions on sets, which are a more elementary version of representations.

Definition 3.2. Let G be a group and X a set. An action of G on X is a map

G×X → X, (g, x) 7→ g · x,

such that

1. e · x = x for all x ∈ X, where e is the identity of G;

2. (g1g2) · x = g1 · (g2 · x) for all g1, g2 ∈ G and x ∈ X.

△

Definition 3.3. Recall the Symmetric Group Sn as the group containing all permutations σ of [n]. The
symmetric group Sn acts on the set [n] by

σ · i = σ(i).

More generally, Sn acts on any set built from {1, . . . , n}, for instance:

• the set of all k–element subsets of 1, . . . , n

• the set of all Young tableaux of a fixed shape whose entries are 1, ..., n.

Our combinatorial objects (tableaux) will therefore naturally carry actions of Sn. △

Group actions naturally give rise to linear representations, one of which is the standard permutation
representation.

Definition 3.4. Let G act on a finite set X. The associated permutation representation is the representation
of G on the vector space

CX =
⊕
x∈X

Cex

with basis {ex}x∈X , where g ∈ G acts by
g · ex = eg·x.

△

Remark 3.5. The direct sum
CX =

⊕
x∈X

Cex

means that every vector v ∈ CX can be written uniquely as a linear combination

v =
∑
x∈X

axex, axis ∈ C,

where the vectors ex form a basis indexed by the elements of X. ⋄
If X is the set of all ways to fill a fixed Young diagram with elements of [n], then CX is a natural

representation of Sn: each permutation simply relabels the entries of a tableau. In Section 4, the Specht
module Sλ can be realized inside such a permutation representation.

6



3.3 Representations and Irreducible Pieces

We now pass from sets to vector spaces.

Definition 3.6. Let G be a group and V a complex vector space. A (linear) representation of G on V is a
homomorphism

ψ : G→ GL(V ),

from G to the group of invertible linear transformations of V . We say that G “acts linearly” on V. Equiv-
alently, specifying ψ is the same as specifying, for each g ∈ G, an invertible linear map v 7→ g · v such
that

e · v = v, (g1g2) · v = g1 · (g2 · v).
Note that many people also call this representation a G-module. Later, when we define Specht Modules

Sλ officially, we will use the words representation and module interchangeably. △

For better intuition, we provide a concrete matrix visualization of a representation of S3:

Example 3.7. Let V = C3 with standard basis e1, e2, e3. For each permutation σ ∈ S3 we define a linear
map ψ(σ) : V → V by

ψ(σ)(ei) = eσ(i).

In other words, ψ(σ) simply permutes the coordinates of a vector according to σ. With respect to the basis
e1, e2, e3, each ψ(σ) is a 3× 3 matrix.
For example, for the transposition (1 2) and the 3-cycle (1 2 3) we get the matrices

ψ((1 2)) =

0 1 0
1 0 0
0 0 1

 , ψ((1 2 3)) =

0 0 1
1 0 0
0 1 0

 .

One checks that
ψ(στ) = ψ(σ)ψ(τ)

for all σ, τ ∈ S3, so ψ : S3 → GL(V ) is a representation in the sense of Definition 3.6. Later, when we
construct Specht modules, we will often describe a representation by giving matrices for a few generators of
Sn in a suitable basis; this is the same notion. ◦

Inside a representation, we often want to look at invariant subspaces:

Definition 3.8. Let G be a group and V a representation of G. A subspace W ⊆ V is a subrepresentation
(or G-submodule) if g · w ∈ W for all g ∈ G and w ∈ W . The representation V is irreducible if its only
subrepresentations are {0} and V itself. △

You can think of irreducible representations as the prime factors of representations: they are the ones
that do not split further into smaller nontrivial invariant subspaces.

Over C, finite-dimensional representations of finite groups always decompose into irreducibles:

Theorem 3.9 (Maschke’s Theorem). Let G be a finite group and let V be a complex representation of G.
Then V decomposes as a direct sum of irreducible subrepresentations:

V ∼=W1 ⊕ · · · ⊕Wr,

where each Wi is irreducible. ⋆

A proof will not be given for the sake of pacing (one may check out various published literature; e.g. [5])

We will use Maschke’s Theorem in the background: once we have constructed a supply of irreducible
Sn–modules Sλ (the Specht Modules), every finite-dimensional representation of Sn can be built by taking
direct sums of them, according to the theorem.
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3.4 Conjugacy Classes of Sn and Partitions

Just before we actually construct our irreps, we offer a few key details of the symmetric group and attempt
to highlight some of the intuition behind why the Young diagrams/tableaux appear in the representations
of Sn:

Definition 3.10. Recall that two elements g, h ∈ G are conjugate if there exists x ∈ G such that h = xgx−1.
Note that the equivalence classes for this relation are the conjugacy classes of G. △

In group theory, the idea of conjugacy classes allows mathematicians to organize the group. As it turns
out, elements that are conjugate behave the same way inside every representation; so, from the point of view
of representations, they are indistinguishable. For Sn, these classes are indexed by partitions of n via cycle
type:

Theorem 3.11. In Sn, two permutations are conjugate if and only if they have the same cycle type.
Equivalently, the conjugacy classes of Sn are in bijection with the partitions of n. ⋆

This is not hard to see:

Proof. Consider the act of conjugation in Sn simply as a relabeling of the elements when the permutation is
written in cycle notation. If

π = (a1...ak)(b1...bl)... ∈ Sn

and
σ ∈ Sn

sends x to x′, then
σπσ−1 = (a′1...a

′
k)(b

′
1...b

′
l)....

Thus, the conjugacy classes of Sn are characterized by the cycle types.

Moreover, since the conjugacy classes are characterized by cycle types, they must correspond to partitions
of n (i.e. the Young diagrams of size n).

Finally, recall from representation theory that:

Theorem 3.12. the number of irreducible representations of a finite group is equal to the number of its
conjugacy classes. ⋆

From this, it becomes quickly obvious why the Young diagrams/tableaux appear in the representation
theory of Sn. There are exactly p(n) conjugacy classes of Sn: each of them corresponds one-to-one with
a partition λ ⊢ n of n. Hence, there must be underlying symmetries encoded by the Young tableaux that
allow for this correspondence. Preserving that invariance and using it to build irreducible representations is
going to be our goal for the next section.
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4 Constructing Irreducible Representations of Sn

Finally, we use Young tableaux to build concrete models for irreducible representations of Sn. The main
tools we will use are Young Symmetrizers and the associated Specht Modules Sλ.

The starting point is the permutation representation (3.4): fix a partition λ ⊢ n, and let X be the set of
all tableaux of shape λ whose boxes are filled with the numbers 1, ..., n. Then, from 3.2 and 3.3: Sn acts on
X by permuting the labels, and hence on the vector space CX. This representation contains many invariant
subspaces, and is thus usually far from irreducible.

That’s where we get the idea of symmetrizers: we want to “filter out” from CX, a distinguished irre-
ducible piece with a specific symmetry pattern determined by λ: symmetric within each row, and alternating
(“antisymmetric”) within each column. We implement this using elements of the group algebra C[Sn] called
Young Symmetrizers. One can think of applying a Young symmetrizer to C[Sn] like a projection onto
our corresponding Specht module Sλ.

*An explicit construction example (S3) will be shown at end of this section for reference.

Remark 4.1. The (complex) group algebra of Sn (denoted as C[Sn] for Sn specifically), concretely speak-
ing, is the vector space whose basis elements are the permutations in Sn, where we allow formal linear
combinations ∑

σ∈Sn

aσ σ, aσ ∈ C,

and we multiply them by extending the group multiplication in Sn linearly. Thus, an element of C[Sn] is
just a “blend” of permutations, and such elements act on a representation by applying each permutation and
adding the results. The Young symmetrizers we use are particular elements of C[Sn] with carefully chosen
coefficients. Their construction is given below: ⋄

4.1 Row and Column Groups → Young Symmetrizers

Definition 4.2. Given a tableau T of shape λ ⊢ n, the row group RT is the subgroup of Sn consisting of all
permutations that preserve each row of T as a set. Similarly, we analogously define the column group CT is
the subgroup of Sn consisting of all permutations that preserve each column of T as a set. △

Example 4.3. Let λ = (2, 1) ⊢ 3 and consider the tableaux

1 2

3

The row group RT consists of the identity and the transposition (1 2), which swaps the two entries in the first
row. The column group CT consists of the identity and the transposition (1 3), which swaps the two entries
in the first column. ◦

We now pass from subgroups to elements in the group algebra C[Sn].

Definition 4.4. The row symmetrizer and column antisymmetrizer associated to T are the elements

aT =
∑

σ∈RT

σ, bT =
∑
τ∈CT

sgn(τ) τ

in the group algebra C[Sn]. Their product

cT = aT bT ∈ C[Sn]

is exactly the Young Symmetrizer associated to the tableau T . △
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Remark 4.5. In the column antisymmetrizer

bT =
∑
τ∈CT

sgn(τ) τ,

the factor sgn(τ) denotes the sign of the permutation τ : it is +1 for even permutations and −1 for odd
permutations. Including this sign ensures that bT is alternating with respect to permutations of the entries
within each column of the tableau T . In contrast, the row symmetrizer aT produces a symmetric sum over
permutations in each row. ⋄
Remark 4.6. The adjectives “symmetrizer” and “antisymmetrizer” reflect the following heuristic: aT averages
over permutations in the rows (forcing symmetry within each row), while bT takes an alternating sum over
permutations in the columns (forcing antisymmetry within each column). The Young symmetrizer cT imposes
both constraints at once. ⋄
Example 4.7. We explicitly construct the Young Symmetrizer of

T :=
1 2

3

from example 4.3, for which its row and column groups are

RT = {e, (12)}, CT = {e, (13)} ⊂ S3,

respectively.
The associated row symmetrizer and column antisymmetrizer are

aT =
∑

σ∈RT

σ = e+ (12), bT =
∑
τ∈CT

sgn(τ) τ = e− (13)

in the group algebra C[S3]. Their product

cT = aT bT = (e+ (12))(e− (13))

= e− (13) + (12)− (12)(13)

is the Young symmetrizer associated to T . Using the convention that products of permutations are composed
from right to left, we have (12)(13) = (132), so we can also write

cT = e− (13) + (12)− (132) ∈ C[S3].

To see concretely how cT imposes both symmetry conditions, let V be any S3–representation and v ∈ V .
First apply the column antisymmetrizer:

bT v = v − (13) · v.

Acting by the column permutation (13) gives

(13) · (bT v) = (13) · v − (13)2 · v = (13) · v − v = −
(
v − (13) · v

)
= − bT v,

so bT v changes sign when we swap the entries in the first column. In this sense, bT enforces “alternating
under the column group”.
Now apply the row symmetrizer to bT v:

w := aT (bT v) = (e+ (12))(bT v) = bT v + (12) · (bT v).

Acting by the row permutation (12), we obtain

(12) · w = (12) · (bT v) + (12)2 · (bT v) = (12) · (bT v) + bT v = w.

Thus w is fixed by (12), so it is symmetric under permutations in the row group.
Since cT v = aT bT v = w, the Young symmetrizer cT produces vectors that are simultaneously symmetric
along the rows of T and alternating along its columns, as desired. ◦

Using the symmetrizers, we can now build the irreducible representations of Sn:
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4.2 Specht Modules

Definition 4.8. Let λ ⊢ n and let T be any tableaux of shape λ. The Specht module of shape λ is the
C[Sn]–submodule

Sλ = C[Sn] cT ⊆ C[Sn]

generated by the Young symmetrizer cT . More concretely speaking, Sλ is defined as the subspace of C[Sn]
spanned by the vectors σcT such that each of its vectors is a linear combination of the form∑

σ∈Sn

aσ(σcT ), aσ ∈ C.

Of course, these vectors, in general, are not linearly independent, and so its dimension is not n!. △

One can think of the Specht Module as the sub-representation of the regular representation of Sn where
we have enforced symmetry along the rows of T (via aT ) and antisymmetry along the columns (via bT ).
Naturally, it makes sense that any two Tableaux with the same shape λ would encode the same symmetry
patterns, hence making each of their respective Specht Modules isomorphic:

Theorem 4.9. If T and T ′ are tableaux of the same shape λ, then the Sn–modules C[Sn]cT and C[Sn]cT ′

are isomorphic. In particular, the Specht module Sλ is well defined up to isomorphism. ⋆

Proof. There is a quick proof for this result:
Let T and T ′ be tableaux of the same shape λ. There exists a permutation σ ∈ Sn that sends the filling of
T to that of T ′. Then:

σRTσ
−1 = RT ′ and σCTσ

−1 = CT ′ ,

so conjugation by σ carries the row and column groups of T to those of T ′.
Passing to the group algebra, we obtain

σaTσ
−1 = aT ′ and σbTσ

−1 = bT ′ ,

and hence
σcTσ

−1 = σaT bTσ
−1 = (σaTσ

−1)(σbTσ
−1) = aT ′bT ′ = cT ′ .

Now, define a map
ϕ : C[Sn]cT −→ C[Sn]cT ′ , ϕ(gcT ) = gσ−1cT ′ .

This map is well defined and C–linear. Moreover, notice that it is an Sn–module homomorphism: for any
h ∈ Sn, we have

ϕ
(
h · (gcT )

)
= ϕ

(
(hg)cT

)
= (hg)σ−1cT ′ = h · (gσ−1cT ′) = h · ϕ(gcT ).

Finally, an inverse map is given by

ψ : C[Sn]cT ′ −→ C[Sn]cT , ψ(gcT ′) = gσcT ,

so ϕ is also bijective and hence an isomorphism of Sn–modules. Therefore C[Sn]cT ∼= C[Sn]cT ′ whenever T
and T ′ have the same shape, and in particular the Specht module Sλ is well defined up to isomorphism, as
desired.

Thus for each partition λ ⊢ n, we obtain a well-defined representation Sλ of Sn.

To show that the Specht modules are indeed irreducible over C[Sn], we may use tabloids and polytabloids:
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Definition 4.10 (Tabloids). Given two tableau of shape λ (i.e. a “λ-tableau”) are called row-equivalent if
each row contains the same set of entries (possibly in a different order). A λ-tabloid is a row-equivalence
class of λ-tableaux. We write {T} for the tabloid represented by a tableau T . The group Sn acts on tabloids
by permuting the entries:

σ{T} = {σT}, σ ∈ Sn.

△

Definition 4.11 (Polytabloids). The polytabloid associated to T is the vector:

eT = cT {T}

in the permutation representation. △

In other words: eT is the signed linear combination of tabloids obtained by symmetrizing along rows
and antisymmetrizing along columns. Note that the Specht module Sλ is defined to be the span of all
polytabloids eT of shape λ.

Fix a partition λ ⊢ n. LetX be the set of all λ–tabloids. By Definition 3.4, the permutation representation
of Sn on X is the vector space

Mλ := CX ,

which we call the permutation module of shape λ.
Now, the irreducibility of Sλ:

Theorem 4.12 (Specht modules are irreducible). For each partition λ ⊢ n, the Specht module Sλ is an
irreducible C[Sn]–module. For fixed n, the modules Sλ with λ ⊢ n form a complete set of pairwise non-
isomorphic irreducible representations of Sn. ⋆

Idea of the proof. We briefly sketch why this is plausible and refer to The Symmetric Group [4, §2.7] for
details.

First, one shows that Sλ is generated by any single standard polytabloid eT : the Sn–orbit of eT contains
all polytabloids eU with U standard, and these span Sλ. Thus Sλ is a cyclic C[Sn]–module.

Next, one proves that there are certain linear relations among polytabloids, called Garnir relations,
which allow any nonstandard polytabloid to be rewritten as a linear combination of polytabloids coming
from “more standard-looking” tableaux. Using these relations, any nonzero vector in Sλ can be straightened
until a single standard polytabloid appears with nonzero coefficient. In particular, every nonzero submodule
of Sλ contains some standard polytabloid.

Combining these two facts shows that any nonzero submodule of Sλ must already contain a generator of
Sλ, and hence equals Sλ itself. Therefore Sλ is irreducible. The statement that the various Sλ exhaust all
irreducible representations of Sn is proved using character theory and will not be discussed here.

4.3 The “Main Structure Theorem”

From this well-defined representation using Specht Modules, we reach (part of) the claim we set up all the
way back in 3.1:

Theorem 4.13. For each partition λ ⊢ n, the Specht module Sλ is an irreducible representation of Sn.
Moreover, every irreducible complex representation of Sn is isomorphic to Sλ for a unique partition λ of n.
If λ ̸= µ, then Sλ and Sµ are non-isomorphic. ⋆

Taken together with Maschke’s Theorem, this shows that the Specht modules provide a complete set of
building blocks for representation theory of Sn: any finite-dimensional representation of Sn decomposes as
a direct sum of Specht modules.

As promised, we will explicitly construct the irreps of S3 as an example:
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Example 4.14. For n = 3 there are three partitions

(3), (2, 1), (1, 1, 1),

so by Theorem 4.13 the three Specht modules S(3), S(2,1), S(1,1,1) give all irreducible representations of S3.
We now describe them explicitly.

(1) The Specht module S(3) (the trivial representation). Take the young tableau:

T =
1 2 3

of shape (3). Here the row group is all of S3 and the column group is trivial:

RT = S3, CT = {e}.

Thus the row symmetrizer and column antisymmetrizer are

aT =
∑
σ∈S3

σ, bT = e,

so the Young symmetrizer is cT = aT bT = aT . The Specht module

S(3) = C[S3]cT

is one–dimensional, spanned by cT itself. For any τ ∈ S3 we have

τ · cT = τ
∑
σ∈S3

σ =
∑
σ∈S3

τσ =
∑

σ′∈S3

σ′ = cT ,

after reindexing σ′ = τσ. Thus every group element acts as the identity on S(3), so this Specht module is
exactly the trivial representation of S3.

(2) The Specht module S(1,1,1) (the sign representation). Now, take the vertical tableau

T =
1

2

3

of shape (1, 1, 1). In this case the row group is trivial and the column group is all of S3:

RT = {e}, CT = S3.

Hence
aT = e, bT =

∑
σ∈S3

sgn(σ)σ,

so cT = aT bT = bT . Again S(1,1,1) = C[S3]cT is one–dimensional, spanned by cT , but now for τ ∈ S3 we
have

τ · cT = τ
∑
σ∈S3

sgn(σ)σ =
∑
σ∈S3

sgn(σ) τσ

=
∑

σ′∈S3

sgn(τ−1σ′)σ′ = sgn(τ)
∑

σ′∈S3

sgn(σ′)σ′ = sgn(τ) cT .

Thus each permutation acts by the scalar sgn(τ), so S(1,1,1) is precisely the sign representation of S3.
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(3) The Specht module S(2,1) (the standard representation). Finally, consider the tableau from
Example 4.3,

T =
1 2

3

of shape (2, 1). We have already computed in Example 4.7 that

RT = {e, (12)}, CT = {e, (13)},

and the corresponding Young symmetrizer is

cT = e− (13) + (12)− (132) ∈ C[S3].

The Specht module S(2,1) = C[S3]cT is a submodule of the regular representation of S3. As for its dimension,
we will simply state that it is 2-dimensional. The reason behind this will be given in the next section (although
you may already have guessed that it has to due with the hook length of T ; which in our case equals 2).

For a concrete description, set
v1 = cT , v2 = (23) cT .

One can check that v1 and v2 are linearly independent and span S(2,1), so they form a basis. In this basis,
the generators (12) and (23) of S3 act as

(12) · v1 = v1, (12) · v2 = −v1 − v2,

(23) · v1 = v2, (23) · v2 = v1.

Thus the matrices of these elements are

ψ(2,1)(12) =

(
1 −1
0 −1

)
, ψ(2,1)(23) =

(
0 1
1 0

)
,

which is the usual 2–dimensional standard representation of S3, as desired.

Altogether, the three Specht modules S(3), S(2,1), and S(1,1,1) have dimensions 1, 2, and 1, respectively,
and are pairwise non-isomorphic. Their dimensions satisfy

12 + 22 + 12 = 6 = |S3|,

so, in accordance with theorem 4.13, they indeed account for all irreducible representations of S3! ◦

In the next section we will connect these modules back to the combinatorics of standard Young tableaux.
In particular, we will see that

dim(Sλ) = fλ,

as indicated during our example.

The fact that the Hook Length Formula from theorem 2.10 gives an explicit formula for the dimensions
of all irreducible representations of the symmetric group is certainly one of the most beautiful results from
the intersection between abstract algebra and combinatorics.
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5 Dimension Formula via Hook Lengths

5.1 A brief reminder: Restriction, Induction, and the idea behind “branching”

Before discussing the branching rule for Specht modules (which is essential to proving the explicit formula
for dim(Sλ)), we pause to recall two basic operations on representations of symmetric groups. These ideas
will clarify the notation ResSn

Sn−1
and explain why removing a box from λ is the correct combinatorial move

when passing from Sn to Sn−1.

Definition 5.1 (Restriction). If V is a representation of Sn, we may view Sn−1 as the subgroup of permu-
tations that fix n. The restriction

ResSn

Sn−1
V

is the same vector space V , but we only allow the elements of Sn−1 to act. Conceptually, we “forget that n
exists” and look only at how the remaining letters {1, . . . , n− 1} are permuted. △

For some intuition: A Specht module Sλ is built using Young symmetrizers, which depend on how the
numbers 1, 2, . . . , n appear inside the diagram λ. If we restrict to Sn−1, the letter n no longer moves, so the
only relevant information is how the remaining boxes of λ (those whose entries are 1, . . . , n− 1 in a tableau)
transform. This means the shape λ should “lose” the box containing n.

Definition 5.2 (Induction). The opposite operation is induction: given a representation W of Sn−1, one
forms

IndSn

Sn−1
W,

which is a canonical way to let all of Sn act. We do not need the details here, but the key idea is that
induction corresponds to adding the letter n in all possible ways. This process is closely related to the edges
in Young’s lattice obtained by adding a box. △

For some more intuition: Consider S3 and its subgroup S2 = ⟨e, (1 2)⟩. If T is a tableau of shape (2, 1),
removing the box containing 3 always produces a tableau of shape (2) or (1, 1). These are exactly the shapes
that appear in the restriction of S(2,1):

ResS3

S2
S(2,1) ∼= S(2) ⊕ S(1,1).

Thus, the representation–theoretic behavior mirrors the combinatorics of removing a corner box.

This perspective is the guiding idea behind the branching rule: when we restrict from Sn to Sn−1, the
box containing n must be removed, and every possible removal contributes one summand. The next section
makes this precise.

5.2 Young’s Lattice and the Branching Rule

In the previous subsection, we saw that restricting a representation from Sn → Sn−1 should be thought of
as “forgetting” the letter n (for Specht modules, this process will be reflected combinatorially by removing
a single box from the Young diagram). Here, we introduce Young’s lattice: the graph that records all such
box-removals. It is exactly the combinatorial shadow of the branching rule.

Definition 5.3 (Young’s Lattice). A box (i, j) of a Young diagram λ is called a corner if there is no box
directly to its right and no box directly below it. If µ is obtained from λ by removing a single corner box,
we write µ→ λ. △

The relation µ → λ turns the set of all partitions into a graph called Young’s lattice: we draw an edge
from µ to λ whenever µ → λ. Paths of length n from the empty partition to a partition λ ⊢ n correspond
to sequences of diagrams obtained by adding one box at a time.
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Example 5.4. Below is the illustration of such a lattice. Here, we have the diagrams of each partition of
Sn (from the trivial S0 to S4) which corresponds to each Sn’s irreducible representations:

As we move up the lattice, each horizontal “row” consists of all partitions of a fixed integer n, and hence
of all irreducible representations of Sn:

• Level n = 0: The bottom ∅ is the unique representation of 0. It corresponds to the trivial representation
of S0.

• Level n = 1: The diagram (1) is the only partition of 1, so S1 also has just one irreducible representa-
tion.

• Level n = 2: The two diagrams (2) and (1,1) give the two irreducible representations of S2: the trivial
representation and the sign representation.

• Level n = 3: The three diagrams (3), (2,1), and (1,1,1) give the three irreducible representations of S3:
the trivial representation, the 2-dimensional standard representation, and the sign representation (this
was shown in Example 4.14).

• Level n = 4: The five diagrams (4), (3,1), (2,2), (2,1,1), and (1,1,1,1) give the five irreducible repre-
sentations of S4. Later, the hook length formula will compute each of their respective dimensions.

◦

In general, the n-th level of Young’s lattice contains all partitions of n, so walking along that level is the
same as listing all irreducible representations of Sn. The branching rule presented below will tell us how
these representations are connected by the edges of the lattice.

Theorem 5.5 (Branching Rule for Sn). Let λ ⊢ n. When we restrict the Specht module Sλ from Sn to
Sn−1, it decomposes as

ResSn

Sn−1
Sλ ∼=

⊕
µ→λ

Sµ,

where the sum runs over all partitions µ obtained from λ by removing a single corner box.
Furthermore, taking dimensions of the Sµ’s gives a recursion for dim(Sλ):

dim(Sλ) =
∑
µ→λ

dim(Sµ). (1)

⋆
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Proof sketch. We will not prove this theorem here, but we briefly sketch the combinatorial idea. One can
notice that the Specht module Sλ in a way that admits a natural basis {vT } indexed by standard Young
tableaux T of shape λ. The precise construction of vT will not matter for us; we only use the indexing by
tableaux.

Now restrict from Sn to Sn−1. Elements of Sn−1 only permute the numbers {1, . . . , n − 1} and leave n
fixed. A key observation is that in any standard Young tableau of shape λ, the entry n must sit in a corner
box of λ: if there were a box to its right or below, that box would have to contain a larger number, which
is impossible.

Thus every basis vector vT singles out a corner box of λ, namely the one containing n. For each corner
c of λ, consider the subspace

Vc = span{ vT : in T, n lies in the box c }.

Because permutations in Sn−1 never move the letter n, they cannot move n out of its corner, so each Vc is
stable under the action of Sn−1.

If we erase the box containing n from any tableau contributing to Vc, we obtain a standard Young tableau
of some smaller shape µ, where µ is obtained from λ by removing the corner box c. Conversely, any standard
tableau of shape µ can be extended uniquely to a standard tableau of shape λ by inserting n into the corner
c. Thus the tableaux indexing Vc are in natural bijection with standard Young tableaux of shape µ, and
from the point of view of Sn−1 the subspace Vc behaves like a Specht module of shape µ.

Different corners c give different shapes µ, and together the subspaces Vc span all of Sλ. This leads to
the decomposition

ResSn

Sn−1
Sλ ∼=

⊕
µ→λ

Sµ

stated in the branching rule.

5.3 The Same Recursion for Standard Young Tableaux

Now look at the numbers fλ. Fix a partition λ ⊢ n and consider a standard Young tableau T of shape λ. If
we erase the box containing n, we obtain a standard Young tableau T ′ of shape µ, where µ is obtained from
λ by removing that corner box. This gives a map

{SYT of shape λ} −→
⋃
µ→λ

{SYT of shape µ}.

Conversely, starting from a standard Young tableau T ′ of shape µ→ λ, we can insert n into the unique
box that must be added to µ to obtain λ; this clearly produces a standard Young tableau of shape λ. Thus,
we have a bijection between:

• SYT of shape λ, and

• pairs (µ, T ′) where µ→ λ and T ′ is an SYT of shape µ.

Counting both sides gives the recursion

fλ =
∑
µ→λ

fµ. (2)

Comparing (1) and (2), we see that the dimensions of Specht modules and the numbers of standard
Young tableaux satisfy the same branching rule.
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5.4 Equality of Dimensions and Tableaux Counts

Finally, we can prove the promised equality.

Theorem 5.6. For each partition λ ⊢ n, the dimension of the Specht module Sλ equals the number of
standard Young tableaux of shape λ:

dim(Sλ) = fλ.

⋆

Proof sketch. We argue by induction on n.
Base case: For n = 1 there is only one partition λ = (1); the Specht module S(1) is the 1–dimensional
trivial representation, and there is also exactly one SYT of shape (1), so dim(S(1)) = f (1) = 1.
Inductive step: Assume the statement holds for all partitions of n − 1. Let λ ⊢ n. Using the branching
rule (Theorem 5.5) and taking dimensions, we get

dim(Sλ) =
∑
µ→λ

dim(Sµ).

By the inductive hypothesis, for each µ→ λ we have dim(Sµ) = fµ, so

dim(Sλ) =
∑
µ→λ

fµ.

But the combinatorial argument above shows that fλ =
∑

µ→λ f
µ, giving dim(Sλ) = fλ, as desired.

Combining this with the Hook Length Formula now yields an explicit formula for the dimensions of all
irreducible representations of Sn:

Corollary 5.7 (The explicit formula for dim(Sλ)). For each partition λ ⊢ n,

dim(Sλ) = fλ =
n!∏

(i,j)∈λ h(i, j)
.

†

As promised, we provide an example – computing the dimensions of all Specht modules of S4:

Example 5.8. The partitions of 4 are

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

For each λ ⊢ 4 we compute dim(Sλ) = fλ using the hook length formula.

• λ = (4). The Young diagram is a single row of four boxes. The hook lengths are 4, 3, 2, 1, so

f (4) =
4!

4 · 3 · 2 · 1
=

24

24
= 1.

Thus S(4) is 1-dimensional (the trivial representation).

• λ = (3, 1). The hook lengths are

4 2 1

1

so their product is 4 · 2 · 1 · 1 = 8, and

f (3,1) =
4!

8
=

24

8
= 3.

Thus S(3,1) is 3-dimensional.
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• λ = (2, 2). The hook lengths are

3 2

2 1

with product 3 · 2 · 2 · 1 = 12, hence

f (2,2) =
4!

12
=

24

12
= 2.

Thus S(2,2) is 2-dimensional.

• λ = (2, 1, 1). The hook lengths are

4 1

2

1

so the product is 4 · 1 · 2 · 1 = 8, and

f (2,1,1) =
4!

8
=

24

8
= 3.

Thus S(2,1,1) is 3-dimensional.

• λ = (1, 1, 1, 1). The hook lengths are:
4 3 2 1

Thus

f (1,1,1,1) =
4!

4 · 3 · 2 · 1
= 1,

and S(1,1,1,1) is 1-dimensional (the sign representation).

Summarizing, the dimensions of the Specht modules of S4 are:

dim(S(4)) = 1, dim(S(3,1)) = 3, dim(S(2,2)) = 2, dim(S(2,1,1)) = 3, dim(S(1,1,1,1)) = 1.

One checks that
12 + 32 + 22 + 32 + 12 = 24 = 4!,

as expected from the general identity
∑

λ⊢n(dim(Sλ))2 = n! = |Sn|. ◦
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6 Young Tableaux and Linear Extensions of Posets

Up to this point, Young diagrams and Young tableaux have appeared mainly in the context of representation
theory: they index the Specht modules and hence the irreducible representations of Sn (see the S3 example
above). In this section we switch gears and look at a purely combinatorial avatar of the same objects: linear
extensions of partially ordered sets (posets). Later we briefly hint at how generating functions associated to
these posets lead naturally to P -partitions and Schur functions.

6.1 Posets and Linear Extensions

We recall some basic definitions from class and add some extra insights.

Definition 6.1. A partially ordered set (abbreviated as poset) is a pair (P,≤) where P is a set and ≤ is
a binary relation on P that is reflexive, antisymmetric, and transitive. If x ≤ y and x ̸= y we write
x < y. If neither x ≤ y nor y ≤ x holds, we say x and y are incomparable. △

Definition 6.2. Let (P,≤) be a finite poset with |P | = n. A linear extension of P is a bijection

ϕ : P −→ {1, 2, . . . , n}

such that whenever x ≤ y in P we have ϕ(x) ≤ ϕ(y). Equivalently, a linear extension is a total order on P
that is compatible with the partial order. We denote by e(P ) the number of linear extensions of P . △

Speaking generally, a linear extension is the same thing as a permutation

x1, x2, . . . , xn

of the elements of P such that xi ≤ xj in P implies i ≤ j. This viewpoint will match perfectly with the
standard Young tableaux.

Example 6.3. Let P be the poset with elements {a, b, c, d} and relations

a < b, a < c, b < d, c < d,

and no other comparabilities. One can picture P as a diamond-shaped Hasse diagram: a at the bottom, b
and c in the middle, and d at the top. A linear extension of P is an ordering of {a, b, c, d} that respects all
these inequalities. For instance,

a < b < c < d and a < c < b < d

are linear extensions, but b < a < c < d is not (it violates a < b).
A short case check shows that

e(P ) = 2,

since the middle two elements b and c can be swapped but must both appear after a and before d. ◦

In general, computing e(P ) for an arbitrary poset P is difficult. For the special family of posets coming
from Young diagrams, however, the answer is famously beautiful and (hopefully) predictable:

6.2 Ferrers posets and standard Young tableaux

Fix a partition λ ⊢ n and its Young diagram. We can regard the cells of this diagram as forming a poset in
a very natural way.
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Definition 6.4. Let λ be a partition and consider its Young diagram as a left-justified array of boxes. Index
the boxes by coordinates (i, j) where i is the row and j is the column. The Ferrers poset Pλ is the poset
whose elements are the boxes of λ and whose partial order is given by

(i, j) ≤ (i′, j′) ⇐⇒ i ≤ i′ and j ≤ j′.

In other words, a box must lie weakly northwest of another box in order to be less than or equal to it. △

Note that if two boxes lie in the same row, then the left one ≤ the right one, and if they lie in the same
column, then the top one ≤ the bottom one.

Example 6.5. Take λ = (2, 1), whose Young diagram is

with boxes which we label as

(1, 1), (1, 2) on the first row, and (2, 1) on the second row.

Then Pλ has relations
(1, 1) ≤ (1, 2), (1, 1) ≤ (2, 1),

and no other comparabilities (since (1, 2) and (2, 1) are incomparable). Up to relabeling of elements, this is
exactly the “diamond” poset from the previous example. ◦

The key observation is that standard Young tableaux of shape λ are exactly the same thing as linear
extensions of Pλ.

Proposition 6.6. Let λ ⊢ n and let Pλ be its Ferrers poset. Then there is a natural bijection

{standard Young tableaux of shape λ} ←→ {linear extensions of Pλ}.

In particular, the number of standard Young tableaux of shape λ equals e(Pλ). ■

Proof. We describe inverse constructions to prove bijectiveness.

• From a standard Young tableau to a linear extension. Let T be a standard Young tableau of shape λ. By
definition, T fills the boxes of λ with the numbers 1, 2, . . . , n so that entries are strictly increasing along rows
(left to right) and along columns (top to bottom).

Read off the boxes of λ in the order in which their labels appear: first the box containing 1, then the box
containing 2, and so on up to n. This gives a total order on the boxes:

b1, b2, . . . , bn,

where bk is the unique box containing the label k in T .
If (i, j) ≤ (i′, j′) in Pλ, then the box (i, j) lies weakly northwest of (i′, j′), so (i, j) is either to the left of

or above (i′, j′). The row and column strictness conditions in T imply that the number in (i, j) is smaller
than the number in (i′, j′). Therefore, in the ordering b1, . . . , bn, the box (i, j) appears before (i′, j′).Thus
this total order is a linear extension of Pλ.

Alternatively, we may define a map

ϕ : Pλ → {1, 2, . . . , n}, ϕ(box) = entry in that box of T,

and the same argument shows that ϕ is a linear extension.
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• From a linear extension to a standard Young tableau. Conversely, let

b1 <L b2 <L · · · <L bn

be a linear extension of Pλ, i.e. a total order on the boxes of λ compatible with the partial order. Fill the
Young diagram of λ by writing 1 in b1, 2 in b2, and so on until we write n in bn.

We claim that the resulting filling is a standard Young tableau. Indeed, consider two boxes in the same
row, say (i, j) and (i, j′) with j < j′. Then (i, j) ≤ (i, j′) in Pλ, so in any linear extension we must have
(i, j) appear before (i, j′), hence the number in (i, j) is smaller. Similarly, along a column, if (i, j) is above
(i′, j), then (i, j) ≤ (i′, j) and the label in (i, j) is smaller. Thus rows and columns are strictly increasing,
and we get a standard Young tableau.

The two constructions are clearly inverse to one another: starting from T , we recover the same total
order on boxes, and starting from a linear extension, we recover the same labeling of boxes. This proves the
bijection, as desired.

Example 6.7. For λ = (2, 1), the Ferrers poset Pλ is the diamond poset. Proposition 6.6 tells us e(Pλ) is
the number of standard Young tableaux of shape (2, 1).

There are exactly two such tableaux:

1 2

3
and

1 3

2

(where we have merely indicated the fillings schematically). Consequently, e(P(2,1)) = 2, matching the direct
computation from the earlier example. ◦

This simple observation explains why Young diagrams show up in the study of linear extensions: each
shape λ determines a poset whose linear extensions are encoded by standard Young tableaux of that shape.

Previously, we already established the hook-length formula for standard Young tableaux. Together with
Proposition 6.6, this immediately answers the enumeration problem for linear extensions of Ferrers posets:

Corollary 6.8. Let λ ⊢ n and let Pλ be the Ferrers poset associated to λ. Then:

e(Pλ) = fλ =
n!∏

c∈λ h(c)
,

where h(c) is the hook length of the cell c in the Young diagram of λ. †

Even in simple shapes, this result gives nontrivial closed forms.

Example 6.9 (Rectangular Ferrers posets). Let λ = (kr) be a rectangular partition (an r× k rectangle), so
the Ferrers poset Pλ has kr elements. For the cell in row i and column j (with 1 ≤ i ≤ r and 1 ≤ j ≤ k), its
hook length is

h(i, j) = (k − j) + (r − i) + 1 = k − j + r − i+ 1.

Hence, the corollary gives

e(P(kr)) =
(kr)!

r∏
i=1

k∏
j=1

(k − j + r − i+ 1)

.

Thus, the number of linear extensions of a rectangular Ferrers poset is encoded directly by the hook lengths
of the corresponding Young diagram. ◦

So for Ferrers posets Pλ we have a remarkably clean answer to the enumeration problem for linear
extensions, and the answer is – not so surprisingly – encoded by the geometry of the Young diagram λ.
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6.3 P -partitions and Generating Functions (a very brief glimpse)

We finish the paper by introducing some connections and motivations of tableaux applications in Generating
functions and P -partitions. Interested readers may check out [1] for a deeper exploration of the topic.
We start by refining the bijection between SYT’s and linear extensions: Instead of labeling the boxes of Pλ

by a single increasing sequence 1, 2, . . . , n, we can allow more general “weights” while still respecting the
order. This leads to the theory of P -partitions.

We only sketch the basic idea and one key connection to Young tableaux.

Definition 6.10 (Informal). Let (P,≤) be a finite poset together with a labeling ω : P → Z+ that assigns
a positive integer to each element of P . A (P, ω)-partition is a map f : P → Z+ such that

• if x < y in P and ω(x) < ω(y), then f(x) ≥ f(y),

• if x < y in P and ω(x) > ω(y), then f(x) > f(y).

In words: f is order-reversing, with a weak/strict distinction depending on the labels. △

For each (P, ω)-partition f we can form a monomial

xm1
1 xm2

2 xm3
3 · · · ,

where mi counts how many elements of P receive the value i under f . Summing over all (P, ω)-partitions
gives a formal power series

KP,ω(x1, x2, . . . ) =
∑
f

x
m1(f)
1 x

m2(f)
2 · · · ,

called the (P, ω)-partition generating function. These generating functions turn out to be surprisingly well-
structured.

Example 6.11 (Ferrers posets and semistandard Young tableaux). Let λ be a partition and Pλ its Ferrers
poset. Choose a labeling ω that is compatible with the reading order of the diagram (e.g. from right to left in
each row, from top row to bottom row). Then (Pλ, ω)-partitions are in natural bijection with semistandard
Young tableaux of shape λ: fill the boxes of λ with nonnegative integers, weakly increasing along rows
and strictly increasing along columns, and read those entries as the values of f . Under this bijection, the
generating function KPλ,ω becomes

KPλ,ω(x1, x2, . . . ) =
∑
T

x
m1(T )
1 x

m2(T )
2 · · · ,

where the sum runs over all semistandard Young tableaux T of shape λ and mi(T ) counts the number of i’s
in T . ◦

The right-hand side of the expression above is precisely one of the standard combinatorial definitions of
the Schur function sλ. Thus, for a suitable labeling,

KPλ,ω(x1, x2, . . . ) = sλ(x1, x2, . . . ).

We will not pursue this further here, but the idea is that:

• Young diagrams and tableaux encode linear extensions of Ferrers posets through Proposition 6.6;

• the same shapes encode richer labelings of these posets (P -partitions), whose generating functions are
Schur functions;

• Schur functions, in turn, play a central role in the representation theory of both Sn and GLn.

In this way, the modest act of counting linear extensions of a poset of boxes is already a doorway into
symmetric functions and deeper representation theory.
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