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1. INTRODUCTION

A g-analogue of a classical formula is a new expression depending on a parameter
q that reduces to the original formula when ¢ — 1. The idea of introducing ¢ into
sums and products first appeared in the work of Euler. In his study of partitions,
Euler examined infinite products such as [[, (1 —¢") and related them to generat-
ing functions. These products turned out to have many interesting properties, and
many later developments in the subject can be traced back to Euler’s calculations.

In the early 1800s, Gauss introduced what is now called the g-binomial theo-
rem while studying special cases of hypergeometric series. This identity showed
that many familiar binomial formulas continue to hold when ordinary integers are
replaced by certain rational functions in q. Gauss’s work marked one of the first
times that a systematic g-analogue of a classical identity was written down.

At the beginning of the twentieth century, Ramanujan discovered a large num-
ber of new identities involving g-series. Many of these involved infinite products,
continued fractions, and generating functions that could be expressed in compact
g-product form. Ramanujan’s work greatly expanded the theory and made it clear
that g-series were not just isolated examples, but part of a much larger framework
with connections to partitions and number theory.

Later developments in the mid-twentieth century showed that many basic ideas
involving ¢-series can be organized using a small number of central objects, such
as the g-integer, the g-factorial, the g-binomial coefficient, and the g-Pochhammer
symbol. These objects appear in many g-identities and make it possible to write
compact product formulas that generalize familiar algebraic expressions.

2. PRELIMINARIES

We begin by defining the g-analog for n. Notice that
l—gq
I—gq

Then, as ¢ approaches 1, this expression approaches n. Thus, we can define this as
the g-analog for n.

n

Definition 2.1. The g-analog of n is defined as [n], = 11%‘1"
q
We can also define g-analogs for many different combinatorial objects. For in-
stance, we can define the q factorial as
B 1— qn 1— qn—l

[n!]q:[n]q[n_l}q[n_z]q“‘[l]q— ._.1—(]

1—gq 1—gq 1—¢
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One question which may arise is why ¢ should appear in combinatorial identities.
Many formulas in combinatorics count objects without distinguishing them. Using
q it is possible to refine these formulas by keeping track of some extra information.
Here, each object will now contribute a power of ¢ instead of just 1. This power
of g often encodes something meaningful about the object. When ¢ approaches 1,
we this extra information collapses down, and we regain the original identity. For
example, as we will demonstrate below, the g-factorial counts all permutations of of
[n], but weighted by inversions. The ordinary factorial only counts permutations.
Thus, the g-factorial has extra information contained within it. It is not a random
construction.

Definition 2.2. Let 7 = {my,72...,m,} be a permutation of {1,2...,n}. Then
an inversion in 7 is a pair (¢, j) where ¢ < j and m; > m;. The number of inversions
in 7 is denoted inv(w).

It turns out that a good reason for using the ¢ factorial is the combinatorial
relation between it and inversions.

Theorem 2.3.

Z qim}(ﬂ) — [n']q

TESy
Proof. Let
Fulg) =Y ¢™™.

TESR

We prove by induction on n that F,(¢) = [n!]4.
For n = 1, the only permutation is (1), which has 0 inversions, so

Fi(q) =1=[1],.

Now assume that F,,_1(q) = [n — 1]!; for some n > 2. Take a permutation
o € S,—1 and form a permutation 7 € S;, by inserting n into one of the n possible
positions from left to right.

If we insert n in position i (where 1 < < n), then there are exactly n —1 entries
to the right of n. All of them are smaller than n, so the insertion creates exactly
n — ¢ new inversions. Thus

inv(r) = inv(o) + (n — ).
The contribution of all permutations obtained from a fixed o is
qinv(a)(l +q+ q2 NI qn—l) — qinv(a) [n]q

Summing over all o € S,,_1, we get

Fog) =y Y ¢™ =nl,Fa1(q)

g€Sy_1
By the induction hypothesis, F,,_1(¢q) = [n — 1]!4, so

Fa(q) = [nlgln —1]tg = [nl],.



3. Q-BINOMIAL THEOREM

Continuing with this line of thought, we can also define the g-binomial coeffi-
cients.

Definition 3.1. The q binomial coefficient is defined as

{n] _ [nl]q _ (I—-¢")-(1- q”fl) (1= qnkarl)
kl, K- [(n— k), (I—¢"(1 =1 (1—q)

There are multiple g-analogs for Pascal’s formula.
i, e e
= q
k], k—1], ko1,
ARty
k], k—-1], ko1,
Proof. These can be proven easily. We only prove the first identity.
n— 1] k[n— 1}
+4q
[kz -1], ko1,
B (€ R C ek ) O € [ €l R € )
(I=¢""A—=¢2)---(1-q) (1=¢")(1—=g"1)--(1-q)
(=g =g (=g - ") + " - ") [n}
(1-g")(1—g"1)---(1—q) k],

Lemma 3.2.

Similarly to the ¢ factorial, there is a nice combinatorial identity which arises
out of the ¢ binomial coefficient.

Definition 3.3. The area of a lattice path is the number of one by one squares
underneath the path.

FEzxzample.
Theorem 3.4.

area a+b
oy
a q

PeL(a,b)

Proof. Let L(a,b) be the set of lattice paths from (0,0) to (a,b) using steps E =
(1,0) and N = (0,1). Define

Aa,b(‘]) — Z qarca(P)
PeL(a,b)
We derive a recursion for A, ;(¢) by looking at the last step of the path. Every
path in L(a,b) ends either with an E step or an N step.
First suppose the last step is E. Then the path can be written as P = P'E
where P’ € L(a — 1,b). The last horizontal step runs along the top of the box and
does not create any new unit squares under the path, so

area(P) = area(P’).
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The contribution of all such paths is A,—1,5(q)-

Next suppose the last step is N. Then the path can be written as P = P'N
where P’ € L(a,b—1). The last vertical step lies in the rightmost column of the
a x b rectangle. It passes above exactly a unit squares, so

area(P) = area(P’) + a
The contribution of all such paths is ¢ A, —1(q).
Combining these two cases, we obtain the recursion
Aap(q) = Aa—1,6(q) + ¢" Aap-1(q)
Now define

a

Bay(q) = [a ’ b} .

By the first g-Pascal identity,
a+b a+b—1 ala+b—1
a g a- a a a
s0 By u(g) satisfies the same recursion

Ba(q) = Ba-1,6(q) + ¢ Ba,p-1(q)-
For the boundary conditions, if b = 0 or a = 0 there is only one path (all E steps
or all N steps), and its area is 0, so
Aao(q) = Aop(q) = 1.
On the other hand,

Bao(q) = [ZL —1, Boylq) = mq —1

Thus Agp(q) and B, (g) satisfy the same recursion with the same initial condi-
tions. By induction on a + b, they are equal, so

PeL(a,b)

a+b
a q'

Theorem 3.5 (g-binomial Theorem).

n—1 n
e 1
k=0 k=0 q

The g-binomial theorem can be viewed as a natural refinement of the classical
binomial theorem. In the product

(1 +a)(1+2q)(1+2¢%) - (1 +2¢" ),

choosing the z¢* term from exactly k of the factors produces a term of the form
ahgirtiettin where 0 < 4 < -+ < 4 < n — 1. Thus the coefficient of z* is the
generating function over all k-element subsets of {0,1,...,n — 1}, weighted by the
sum of the chosen indices. Shifting the indices gives a partition that fits inside a
k x (n— k) rectangle, and the weight becomes ||+ k(k —1)/2. Since the generating
function for all such partitions is [m, this explains the appearance of both the
Gaussian binomial coefficient and the factor ¢*(k=1)/2,



Proof. Suppose f(x) = [Tr_4 (1 + 2¢*). Also suppose that
f@) = 1+ 2) 1+ ag) - (142" = Y Pt
k=0

This means that
(1+g2)f(gz) = (1 +¢"z)f(x)
Substituting in the sum for f(z),

n n
(1+2x) Z Pog"a® = (14 ¢"x) Z Py.a*
k=0 k=0
Examining the coefficients tells us that
Pr10" + Poo1d" ' = P+ ¢"Pes
Then,
qnkarl o 1qk71
¢" -1
If we apply this repeatedly, we get that

P =Py

This is proves the g-binomial theorem. |

4. PRODUCTS AND PARTITIONS

A partition of an integer n is a decomposition of n into a sum of integers where
order does not matter. For example, if we consider the number 6, then some
examples of partitions are

1+14+1+3
24242
1+1+4+4
Note that 1 +3 + 1 + 1 is not considered a distinct partition and is the same as

1+ 1+ 1+ 3. Therefore, we write a partition with the parts in ascending order.
We define the function p(n) to be the number of partitions of n.

Definition 4.1. The ¢g-Pochhammer symbol can be defined as
(@:¢)n =1 —a)1~aq)-- (1 —ag"™)

The g-Pochhammer symbol can be extended to an infinite product as such:
(oo}
(a:¢)00 = [J (1 — ad®)
k=0
The g-Pochhammer symbol is very important in partition theory, as the term
(1 — ¢™)~! encodes that n may appear a nonnegative number times. This can be
seen with the geometric series expansion

(l_qn)71:1+qn_~_q2n'_.

Choosing ¢*" means that n is included exactly k times in a partition. This gives
an explanation as to why the generating function for the partitions is (¢; ¢)5. We
also have the following



Theorem 4.2. The number of partitions of m into exactly n parts is equal to the

coefficient of ¢ a™ in
o0

(a:q)x =[] (1 = ag") ™!
k=0
Proof. To understand the product, we look at one factor at a time. For a fixed
positive integer k, the expansion
(1—ag®) ' =14 ag" +a*¢* + a3 + - -

lists all possible ways the part k can appear in a partition. Choosing the first term
means that the part k is not used. Choosing the second term means that the part
k is used once. Choosing the third term means that it is used twice, and so on.
Each choice contributes a power of a equal to the number of times k is used, and a
power of ¢ equal to the total contribution of those copies to the sum of the parts.

When we take the full product over all k£ > 1, we are making one such choice for
every possible part size. Since a partition only uses finitely many parts, almost all
of these choices will be the first term, meaning the corresponding part size does not
appear. After all choices are made, multiplying them together produces a monomial
whose power of a is the total number of parts chosen, and whose power of ¢ is the
total sum of all parts.

A term a™q™ therefore appears exactly when the chosen parts add up to m and
there are exactly n of them. This is precisely a partition of m into n parts. Every
such partition determines exactly one selection of terms in the product, and every
valid selection determines exactly one partition. Thus the coefficient of a™¢™ in
(a;q)=} counts the number of partitions of m into exactly n parts. [ |

We can express other g-analogs in terms of the g-Pochhammer symbol. For
example,
(¢ 9)n
0], = ——=
(g
Extending this, we have the g-gamma function
oy = 170" (@ 0
q(x) = -
(4% 0o
The g-Pochhammer symbol also appears very naturally in the generating func-

tion for partitions.
. 1
p(n)q" =
,;) (¢ 9)oc

We also have that -
> pa(m)d” = (=¢;9)
n=0

where pg(n) is the number of partitions of n into distinct parts. These results can
be used to show a famous theorem of Euler.



Theorem 4.3 (Euler). The number of partitions of a positive integer n into distinct
parts is equal to to the number of partitions of n into odd parts.

Proof.

> pa(n)g" = (—4;9)o0 =

n=0 n

=—5— =) Po(n)q"
(¢;4%) oo ;::OP I

o0
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n
1 n=1 q

|
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