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Abstract

In 1899, Georg Pick discovered a simple formula relating the area of a 2-dimensional
lattice polygon to the number of integer points on its boundary and in its interior.
However, it fails to generalize to three or more dimensions. This paper explores the
question: “What happens in higher dimensions?” We will demonstrate the failure
of a simple generalization using the Reeve tetrahedron, and then introduce a new
perspective: dilation. This leads us to the theory of Ehrhart polynomials, which counts
lattice points in scaled versions of a polytope. We will show that these polynomials
not only generalize the concept of volume but also, through a property called Ehrhart-
Macdonald Reciprocity, contain Pick’s original formula as a special case.

1 Introduction: Pick’s Theorem

We begin in the 2-dimensional integer lattice, Z?, which is the set of all points (x,y) where
x and y are integers.

A lattice polygon P is a simple polygon (one that does not intersect itself) in the
xy-plane whose vertices are all points in the integer lattice Z22.

Given a lattice polygon P, we are interested in two numbers:

e /(P): The number of lattice points strictly in the interior of P.
e B(P): The number of lattice points on the boundary of P.

In 1899, Georg Pick discovered a formula that connects these two numbers to the area
of the polygon, A(P).

[Pick’s Theorem] For any simple lattice polygon P, its area A(P) is given by:

B(P
A(P)=1I(P)+ % —

Let’s test this theorem with an example. Consider the triangle T' with vertices at (0, 0),
(2,0), and (0,1).

We can find the area using standard geometry: A(T') = % x base X height = % x2x1=1.

Now, let’s count the lattice points:



e Interior points /(7): There are no lattice points strictly inside the triangle. So,
I(T)=0.

e Boundary points B(T'): The lattice points on the boundary are (0, 0), (1,0), (2,0), (0, 1).
Note that (1,1) and (2, 1) are not on the boundary. So, B(T) = 4.

We check using Pick’s theorem:
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The formula A(T) = 1 matches our geometric calculation. This formula begs a question:

What happens in higher dimensions?

2 The Problem: Failure in 3D

It is natural to ask if a similar formula exists for 3D lattice polytopes. We might hope to
find some simple linear relation between the Volume V', the number of interior points 7, and
the number of boundary points B:

V =c1I 4+ ceB+c3 (A hypothetical 3D Pick’s formula)

Unfortunately, no such simple formula exists. The classic counterexample is the Reeve
tetrahedron.

For any integer h > 1, the Reeve tetrahedron R, is the tetrahedron in Z3 with vertices
at (0,0,0), (1,0,0), (0,1,0), and (1,1, h).

Let’s analyze the properties of Ry,.

e Lattice Points: For any h > 1, the Reeve tetrahedron Rj; has no interior lattice
points. Furthermore, the only lattice points on its boundary are the four vertices.
(Proving this is a good exercise, but we will take it as given). Thus, for any h, we have

I(Ry) =0 and B(Ry,) = 4.

e Volume: The volume of a tetrahedron with one vertex at the origin and others at a,
b, cisV = é| det(a, b, )|. For Ry, we have @ = (1,0,0), b= (0,1,0), and ¢ = (1,1, h).
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Here is the problem: our hypothetical 3D Pick’s formula would depend on I and B. But
for all h > 1, I and B are constant (I = 0, B = 4). This would imply the volume must also
be constant.

V(Rp) = c1(0) + c2(4) + ¢35 = dea + ¢

But we just showed V(R),) = h/6, which clearly depends on h! This is a contradiction. We
conclude that no simple generalization of Pick’s Theorem exists. To answer our question
from above, we will need a more powerful tool.
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3 Dilation and the Ehrhart Function

The failure of the hypothetical formula in 3D motivates a different approach. Instead of
looking at a single polytope, what if we look at an entire family of them?

Let P be a d-dimensional polytope (e.g., a polygon in 2D or a polyhedron in 3D). For
any positive integer ¢, the t-th dilate of P, denoted tP, is the polytope scaled by a factor
of t:

tP={t- 7|7 e P}

This leads us to a new way of counting. Instead of just counting points in P, let’s count
points in tP for all t =1,2,3,...

Let P be a d-dimensional lattice polytope. The Ehrhart function of P, denoted Lp(t),
is a function of ¢ that counts the number of integer lattice points in the ¢-th dilate of P.

Lp(t)=[tPNZ% forteN

Let’s find the Ehrhart function for a simple polytope: the unit square S = [0,1]? in Z2.
Its vertices are (0,0), (1,0),(0,1),(1,1).
e For t = 1, 1S = [0,1]?. The lattice points are (0,0),(1,0),(0,1),(1,1). There are
(141) x (14 1) =4 points. So, Lg(1) = 4.

e For t =2, 25 = [0,2]*>. The lattice points (z,y) have z € {0,1,2} and y € {0,1,2}.
There are (2+1) x (24 1) =9 points. So, Lg(2) =9.

e Fort = 3,35 = [0,3]?. The lattice points (z,y) have z € {0,1,2,3} and y € {0, 1,2, 3}.
There are (3 +1) x (34 1) = 16 points. So, Lg(3) = 16.
Looking at the sequence 4,9, 16, ..., we can make an educated guess to the formula:
Ls(t)=(t+1)?=t*+2t+1

Notice something remarkable: this function, which counts discrete points, turns out to be a
simple polynomial.

4 Ehrhart’s Theorem

This observation from our example is not a coincidence. It results from a powerful theorem
by Eugene Ehrhart, published in 1962.

[Ehrhart’s Theorem] Let P be a d-dimensional convex lattice polytope. The Ehrhart
function Lp(t) is a polynomial in ¢ of degree d.

Lp(t) = cat® + cg 1t -+ egt + ¢

This polynomial is called the Ehrhart polynomial of P.

This theorem tells us that the counting of points inside scaled polytopes is governed by
a clean polynomial. The answer lies in the polynomial’s coefficients.

[Properties of Ehrhart Coefficients] Let Lp(t) = c4t? + -+ + ¢y be the Ehrhart
polynomial for a d-dimensional lattice polytope P.
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e The leading coefficient, cg4, is the volume of P.

e The second coefficient, ¢;_1, is half the "normal” surface volume (a bit complex, but
for d =2, it is $ B(P)).

e The constant term, ¢, is Lp(0) = 1. (Note: This property holds for the convex
polytopes to which this theorem applies).

Let’s revisit our unit square example S = [0,1]%, where d = 2. We found Lg(t) =
t* 42t 4 1.

e ¢o = 1. The volume (area) of the unit square is 1 x 1 = 1. It matches.

e ¢; = 2. The boundary of the square has 4 lattice points: (0,0),(1,0),(0,1),(1,1). The
boundary length is 4. The coefficient is ¢; = 3 x (Boundary Length) = 1 x
matches.

e ¢y = 1. It matches.

So, the Ehrhart polynomial Lp(t) encodes the Volume of P (as ¢;) and its boundary measure
(as cq—1). This is the generalization we were looking for.

5 Ehrhart-Macdonald Reciprocity

So far, we’ve been counting all the lattice points, but Pick’s formula cared about interior
points too. Let’s define a polynomial for them.
Let P be a lattice polytope. We define Ip(t) as the number of interior lattice points in
the t-th dilate of P.
Ip(t) = |int(tP) N Z%|

This function Ip(t) also turns out to be a polynomial.
But how do Lp(t) (all points) and Ip(t) (interior points) relate?
[Ehrhart-Macdonald Reciprocity] Let P be a d-dimensional lattice polytope. The
polynomials Lp(t) and Ip(t) are related by the following simple equation:

Ip(t) = (—=1)"Lp(-1)

This theorem states that if you take the polynomial that counts all lattice points and
evaluate it at negative integers, you get back the number of interior points for positive
integers. It’s a “reciprocity” that links the inside and the outside of the polyhedron.

For our unit square S, d = 2 and Lg(t) = t* + 2t + 1. Reciprocity predicts:

Is(t) = (=1)*Lg(—t) = Lg(—t) = (—t)* + 2(—t) + 1 =t* =2t + 1= (t — 1)?
Let’s check this. I5(t) counts interior points in £S5 = [0, ¢]>. The interior is (0,¢) x (0,).

o =1: I5(1) = (1 —1)*> = 0. Interior of [0,1]%is (0,1)?. It has 0 lattice points. This is
correct.



o t =2: [g(2) = (2—1)* = 1. Interior of [0,2]? is (0,2)?. It has one lattice point: (1,1).
ot =3 Is(3) = (3—1)? = 4. Interior of [0,3]? is (0,3)?. Tt has four lattice points:
(17 1)’ <1’ 2)7 (27 1)7 (2’ 2)'

So, the reciprocity theorem works.

6 Rederiving Pick’s Formula

We now have all the tools to answer our original question. We can use Ehrhart polynomials
to derive Pick’s 2D formula, showing that Pick’s is just a piece of a much larger picture.
Let P be any 2D lattice polygon (d = 2). From Ehrhart’s Theorem, we know:

Lp(t) = cot® + e1t + ¢

From the properties of the coefficients:

e ¢y = Volume(P) = A(P) (the Area).

e ¢; = 3B(P) (for d = 2, this is half the number of boundary points).

e ¢ = 1.
Substituting these into the polynomial, we get:

Lp(t) = A(P)t* + @t +1
Now, let’s use Ehrhart-Macdonald Reciprocity to find the interior polynomial, Ip(t):
Ip(t) = (=1)’Lp(=t) = Lp(~t)
Ip(t) = A(P)(—t)* + @(—t) +1=A(P)t* - @t +1

We now have two equations for A(P), B(P), and I(P). All we have to do is evaluate them
at t = 1.

e Lp(1) is, by definition, the total number of lattice points in 1P = P. This is I(P) +

B(P).
e [p(1) is, by definition, the total number of interior lattice points in 1P = P. This is
I(P).
Let’s use the second formula, Ip(t), and set t = 1:
B(P
Ip(1) = A(P)(1)* — %(1) +1
B(P
I(P) = A(P) — (2 ) 1
Now, we just rearrange the terms to solve for A(P):
B(P
A(P) :I(P)+—(2 ) _ 1

This is exactly Pick’s Theorem.



7 Conclusion

We began with a simple 2D formula, Pick’s Theorem, and asked what happens in higher
dimensions. We quickly saw that a simple generalization fails, forcing us to adopt a new
perspective. By counting lattice points in dilations of a polytope P, we discovered the
Ehrhart polynomial Lp(t).

This polynomial not only encodes the d-dimensional volume as its leading coefficient but
also obeys reciprocity that relates all lattice points to just the interior ones. From this higher
dimensional theory, Pick’s original formula comes out as a simple d = 2,¢ = 1 case.
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