

Euler Circle Combinatorics Expository Paper (q Analogues)

Channing Yang

December 7, 2025

Abstract

In this paper, we will explore an algebraic/number theoretic method of interpreting the partition function $p(n)$, which equals the number of ways to express n as a sum of (not necessarily distinct) positive integers (we will call each of these summands “parts”), where order does not matter. This seemingly unwieldy function has a surprisingly clean asymptotic formula found by Ramanujan and Hardy, namely $p(n) \sim \frac{1}{4n\sqrt{3}} e^{\pi\sqrt{\frac{2n}{3}}}$. However, this asymptotic formula does not help in determining the number theoretic properties of $p(n)$; it is impossible to tell from it, for instance, when $p(n)$ is even. This makes Ramanujan’s discovery that $p(5k+4) \equiv 0 \pmod{5}$ for any nonnegative integer k extremely impressive. In this paper we will develop a generating function analogue for partitions to prove several results about partitions, ending with Ramanujan’s celebrated $p(5k+4) \equiv 0 \pmod{5}$ congruence.

1 q Analogues

We have the well-known generating function

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{k=1}^{\infty} \frac{1}{1-q^k}.$$

Indeed, writing the right hand side as

$$(q^{0 \cdot 1} + q^{1 \cdot 1} + q^{2 \cdot 1} + \dots)(q^{0 \cdot 2} + q^{1 \cdot 2} + q^{2 \cdot 2} + \dots)(q^{0 \cdot 3} + q^{1 \cdot 3} + q^{2 \cdot 3} + \dots) \dots,$$

we see that each term in the product of the form $1+q^k+q^{2k}+\dots$ corresponds to the number of k ’s in a partition. For example, the term

$$q^{2 \cdot 1} \cdot q^{1 \cdot 2} \cdot q^{0 \cdot 3} \cdot q^{1 \cdot 4} \cdot q^{0 \cdot 5} \cdot q^{0 \cdot 6} \dots = q^8$$

in the product would correspond to the partition $1 + 1 + 2 + 4 = 8$.

It is natural to modify $p(n)$ slightly and derive similar generating functions, which we do below.

Definition 1.1 (Definition). *We will denote $q_m(n)$ to be the number of partitions of n into at most m parts and $r_m(n)$ to be the number of partitions of n into parts that are at most m .*

Claim 1.2. *For all positive integers m and n , we have $q_m(n) = r_m(n)$.*

Proof. The claim is true for $m = 1$ as we have $q_1(n) = r_1(n)$ for all n , so we will assume that $m \geq 2$.

We may use a similar argument as above to see that

$$\sum_{n=0}^{\infty} r_m(n)q^n = \prod_{k=1}^m \frac{1}{1-q^k}.$$

Therefore, it suffices to prove that

$$\sum_{n=0}^{\infty} q_m(n)q^n = \prod_{k=1}^m \frac{1}{1-q^k}.$$

We note that we may extend each partition of n into at most m positive parts to a partition of n into exactly m nonnegative parts by appending 0's. Therefore, we have

$$\sum_{n=0}^{\infty} q_m(n)q^n = \sum_{n_1 \geq n_2 \geq \dots \geq n_m \geq 0} q^{n_1+n_2+\dots+n_m}.$$

Definition 1.3 (Definition). *Given variables $\lambda_1, \dots, \lambda_k, q_1, \dots, q_\ell$ and a series S where each term is of the form $\lambda_1^{e_1} \dots \lambda_k^{e_k} q_1^{e_{k+1}} \dots q_\ell^{e_{k+\ell}}$ for integers $e_1, \dots, e_{k+\ell}$, we define $\Omega_{\geq}(S)$ to be the series obtained by removing all terms with negative exponents and setting all λ_i 's equal to 1 for the other terms.*

For example,

$$\Omega_{\geq} (q_1 q_2 \lambda_1^{-1} \lambda_2 + q_1^2 \lambda_1 \lambda_2) = q_1^2.$$

Then, we may write

$$\sum_{n_1 \geq n_2 \geq \dots \geq n_m \geq 0} q^{n_1+n_2+\dots+n_m} = \Omega_{\geq} \sum_{n_1, n_2, \dots, n_m \geq 0} q^{n_1+n_2+\dots+n_m} \lambda_1^{n_1-n_2} \lambda_2^{n_2-n_3} \dots \lambda_{m-1}^{n_{m-1}-n_m}.$$

The right hand side further equals

$$\Omega_{\geq} \sum_{n_1=0}^{\infty} (q \lambda_1)^{n_1} \sum_{n_2=0}^{\infty} \left(\frac{q \lambda_2}{\lambda_1} \right)^{n_2} \dots \sum_{n_{m-1}=0}^{\infty} \left(\frac{q \lambda_{m-1}}{\lambda_{m-2}} \right)^{n_{m-1}} \sum_{n_m=0}^{\infty} \left(\frac{q}{\lambda_{m-1}} \right)^{n_m}.$$

Lemma 1.4. *We have*

$$\Omega \geq \sum_{n=0}^{\infty} (\lambda x)^n \sum_{m=0}^{\infty} (y/\lambda)^m = \sum_{k=0}^{\infty} x^k \sum_{m=0}^{\infty} (xy)^m.$$

Proof. We have

$$\begin{aligned} \Omega &\geq \left(\sum_{n=0}^{\infty} (\lambda x)^n \right) \left(\sum_{m=0}^{\infty} (y/\lambda)^m \right) = \Omega \geq \sum_{n=0}^{\infty} (\lambda x)^n \sum_{m=0}^{\infty} (y/\lambda)^m \\ &= \Omega \geq \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \lambda^{n-m} x^n y^m \\ &= \Omega \geq \sum_{n=m}^{\infty} \sum_{m=0}^{\infty} x^n y^m \\ &= \sum_{m=0}^{\infty} \sum_{n=m}^{\infty} x^n y^m \\ &= \sum_{m=0}^{\infty} (xy)^m \sum_{k=0}^{\infty} x^k \\ &= \sum_{k=0}^{\infty} x^k \sum_{m=0}^{\infty} (xy)^m. \end{aligned}$$

□

Now, we apply our Lemma with $x = q$, $y = q\lambda_2$, and $\lambda = \lambda_1$ to write

$$\Omega \geq \sum_{n_1=0}^{\infty} (q\lambda_1)^{n_1} \sum_{n_2=0}^{\infty} \left(\frac{q\lambda_2}{\lambda_1} \right)^{n_2} = \sum_{k=0}^{\infty} q^k \sum_{m=0}^{\infty} (q^2\lambda_2)^m.$$

This would remove all terms with a negative exponent on λ_1 and set $\lambda_1 = 1$ for all other terms. We apply our Lemma again with $x = q^2$, $y = q\lambda_3$, and $\lambda = \lambda_2$ to write

$$\begin{aligned} \Omega &\geq \sum_{k=0}^{\infty} q^k \sum_{m=0}^{\infty} (q^2\lambda_2)^m \sum_{n_3=0}^{\infty} \left(\frac{q\lambda_3}{\lambda_2} \right)^{n_3} = \left(\sum_{k=0}^{\infty} q^k \right) \left(\Omega \geq \sum_{m=0}^{\infty} (q^2\lambda_2)^m \sum_{n_3=0}^{\infty} \left(\frac{q\lambda_3}{\lambda_2} \right)^{n_3} \right) \\ &= \sum_{k=0}^{\infty} q^k \sum_{\ell=0}^{\infty} q^{2\ell} \sum_{m=0}^{\infty} (q^3\lambda_3)^m. \end{aligned}$$

This would remove all terms with a negative exponent on λ_2 and set $\lambda_2 = 1$ for all other terms. We may continue doing this to find that

$$\Omega \geq \sum_{n_1=0}^{\infty} (q\lambda_1)^{n_1} \sum_{n_2=0}^{\infty} \left(\frac{q\lambda_2}{\lambda_1}\right)^{n_2} \cdots \sum_{n_{m-1}=0}^{\infty} \left(\frac{q\lambda_{m-1}}{\lambda_{m-2}}\right)^{n_{m-1}} \sum_{n_m=0}^{\infty} \left(\frac{q}{\lambda_{m-1}}\right)^{n_m}$$

equals

$$\sum_{k_1=0}^{\infty} q^{k_1} \sum_{k_2=0}^{\infty} q^{2k_2} \cdots \sum_{k_m=0}^{\infty} q^{mk_m}.$$

We have

$$\sum_{k_1=0}^{\infty} q^{k_1} \sum_{k_2=0}^{\infty} q^{2k_2} \cdots \sum_{k_m=0}^{\infty} q^{mk_m} = \frac{1}{(1-q)(1-q^2) \cdots (1-q^m)}.$$

This proves that $q_m(n) = r_m(n)$ for all positive integers m and n . \square

Having seen the power of partition generating functions in turning combinatorial problems into algebraic ones, we now dedicate the remainder of the paper to proving the number theoretic $p(5k+4) \equiv 0 \pmod{5}$. We will need to prove several intermediate theorems along the way. [Definition] Fix two positive integers m and n , and define the generating function

$$R_q(m, n) = \sum_{n \geq k_1 \geq k_2 \geq \cdots \geq k_m \geq 0} q^{k_1+k_2+\cdots+k_m}.$$

Claim 1.5. *For all positive integers $m, n \geq 2$, we have*

$$R_q(m, n) = R_q(m, n-1) + q^n R_q(m-1, n).$$

Proof. We have

$$\begin{aligned} R_q(m, n) &= \sum_{n \geq k_1 \geq k_2 \geq \cdots \geq k_m \geq 0} q^{k_1+k_2+\cdots+k_m} \\ &= \sum_{n > k_1 \geq k_2 \geq \cdots \geq k_m \geq 0} q^{k_1+k_2+\cdots+k_m} + \sum_{n=k_1 \geq k_2 \geq \cdots \geq k_m} q^{k_1+k_2+\cdots+k_m} \\ &= \sum_{n-1 \geq k_1 \geq k_2 \geq \cdots \geq k_m} q^{k_1+k_2+\cdots+k_m} + q^n \sum_{n \geq k_2 \geq \cdots \geq k_m \geq 0} q^{k_2+\cdots+k_m} \\ &= R_q(m, n-1) + q^n R_q(m-1, n). \end{aligned}$$

\square

[Definition] For all positive integers n , we will denote

$$(n)_q = R_q(n-1, 1) = 1 + q + \cdots + q^{n-1}.$$

We will further denote

$$(n)!_q = (n)_q(n-1)_q \cdots (1)_q.$$

Claim 1.6. *For all positive integers m and n , we have*

$$R_q(m, n) = \frac{(m+n)!_q}{(m)!_q(n)!_q}.$$

Proof. The result is true for $m = 1$ as

$$R_q(1, n) = \frac{(n+1)!_q}{(n)!_q(1)!_q} = 1 + q + \cdots + q^n.$$

Similarly, the result is true for $n = 1$ as

$$R_q(m, 1) = \frac{(m+1)!_q}{(m)!_q(1)!_q} = 1 + q + \cdots + q^m.$$

We now prove the result for general m and n by induction on $m+n$, with the base cases of $m+n = 2, 3$ already covered above. We now assume that, for some positive integer k , the result holds for all $m+n = k$, and we will prove that the result holds for all $m+n = k+1$. If $m = 1$ or $n = 1$, then we may use the argument above. We will now assume that $m, n \geq 2$. We apply the inductive hypothesis to find that

$$\begin{aligned} R_q(m, n) &= R_q(m, n-1) + q^n R_q(m-1, n) \\ &= \frac{(m+n-1)!_q}{(m)!_q(n-1)!_q} + \frac{(m+n-1)!_q}{(m-1)!_q(n)!_q} \\ &= \frac{(m+n-1)!_q(q^n(m)_q + (n)_q)}{(m)!_q(n)!_q} \\ &= \frac{(m+n-1)!_q(q^n(1+q+\cdots+q^{m-1}) + (1+q+\cdots+q^{n-1}))}{(m)!_q(n)!_q} \\ &= \frac{(m+n)!_q}{(m)!_q(n)!_q}. \end{aligned}$$

This completes the inductive step. □

Note that we may write

$$R_q(m, n) = \frac{(1 - q^{m+n}) \cdots (1 - q)}{(1 - q^m) \cdots (1 - q)(1 - q^n) \cdots (1 - q)}.$$

We now prove an important theorem.

Theorem 1.7. (*Jacobi Triple Product Identity*) *We have*

$$\prod_{m=1}^{\infty} (1 - q^{2m})(1 + xq^{2m-1})(1 - x^{-1}q^{2m-1}) = \sum_{k=-\infty}^{\infty} q^{k^2} x^k,$$

Proof. We first observe that

$$(1 + xq)(1 + xq^2) \cdots (1 + xq^n) = \sum_{k=0}^n \left(\sum_{n \geq x_1 > x_2 > \cdots > x_k > 0} q^{x_1 + x_2 + \cdots + x_k} \right) x^k.$$

We note that the right hand side equals

$$\sum_{k=0}^n \left(\sum_{n-k \geq x_1 - k \geq x_2 - (k-1) \geq \cdots \geq x_k - 1 \geq 0} q^{(x_1 - k) + (x_2 - (k-1)) + \cdots + (x_k - 1)} q^{\frac{k(k+1)}{2}} \right) x^k.$$

By our previous definition of $R_q(m, n)$, this further equals

$$\sum_{k=0}^n R_q(k, n - k) q^{\frac{k(k+1)}{2}} x^k.$$

We now make the substitution $x \rightarrow -\frac{x}{q}$ to obtain

$$(1 - x)(1 - xq) \cdots (1 - xq^{n-1}) = \sum_{k=0}^n R_q(k, n - k) q^{\frac{k(k-1)}{2}} (-x)^k.$$

We further make the substitution $n \rightarrow 2n$ to obtain

$$(1 - x)(1 - xq) \cdots (1 - xq^{2n-1}) = \sum_{k=0}^n R_q(k, 2n - k) q^{\frac{k(k-1)}{2}} (-x)^k.$$

We may rewrite the left hand side as

$$(-x)^n q^{\frac{n(n-1)}{2}} (1 - x^{-1})(1 - x^{-1}q^{-1}) \cdots (1 - x^{-1}q^{-n+1})(1 - xq^n) \cdots (1 - xq^{2n-1}).$$

We make the substitution $x \rightarrow \frac{x}{q^n}$ to obtain

$$\left(-\frac{x}{q^n}\right)^n q^{\frac{n(n-1)}{2}} (1-x^{-1}q)(1-x^{-1}q^2) \cdots (1-x^{-1}q^n)(1-x)(1-xq) \cdots (1-xq^{n-1})$$

equals

$$\sum_{k=0}^n R_q(k, 2n-k) q^{\frac{k(k-1)}{2}} \left(-\frac{x}{q^n}\right)^k.$$

We multiply both of these expressions by $q^{\frac{n(n+1)}{2}} (-x)^{-n}$ to obtain

$$(1-x^{-1}q) \cdots (1-x^{-1}q^n)(1-x) \cdots (1-xq^{n-1}) = \sum_{k=0}^{2n} R_q(k, 2n-k) q^{\frac{(n-k)(n-k+1)}{2}} (-x)^{-n+k}.$$

We make the substitution $k \rightarrow -n+k$, so that the right hand side becomes

$$\sum_{k=-n}^n R_q(n+k, n-k) q^{\frac{k(k-1)}{2}} (-x)^k.$$

Now, note that fixing k and letting n tend toward infinity, we have

$$\lim_{n \rightarrow \infty} R_q(n+k, n-k) = \lim_{n \rightarrow \infty} \frac{(1-q^{2n}) \cdots (1-q)}{(1-q^{n+k}) \cdots (1-q)(1-q^{n-k}) \cdots (1-q)} = \prod_{m=1}^{\infty} \frac{1}{1-q^m},$$

as the numerator tends to $\prod_{m=1}^{\infty} (1-q^m)$ and the denominator tends to $(\prod_{m=1}^{\infty} (1-q^m))^2$. Therefore, letting n tend to infinity on both sides of the equation

$$(1-x^{-1}q) \cdots (1-x^{-1}q^n)(1-x) \cdots (1-xq^{n-1}) = \sum_{k=-n}^n R_q(n+k, n-k) q^{\frac{k(k-1)}{2}} (-x)^k,$$

we have

$$\prod_{m=1}^{\infty} (1-x^{-1}q^m)(1-xq^{m-1}) = \prod_{m=1}^{\infty} \frac{1}{1-q^m} \sum_{k=-\infty}^{\infty} q^{\frac{k(k-1)}{2}} (-x)^k.$$

Therefore, we have

$$\prod_{m=1}^{\infty} (1-x^{-1}q^m)(1-xq^{m-1})(1-q^m) = \sum_{k=-\infty}^{\infty} q^{\frac{k(k-1)}{2}} (-x)^k.$$

We now substitute $q \rightarrow q^2$ and $x \rightarrow -xq$ to get that

$$\prod_{m=1}^{\infty} (1 - q^{2m})(1 + xq^{2m-1})(1 - x^{-1}q^{2m-1}) = \sum_{k=-\infty}^{\infty} q^{k^2} x^k,$$

as desired. \square

[Definition] We will define the following.

- $(a)_n = (a; q)_n = \prod_{k=0}^{n-1} (1 - aq^k).$
- $(a)_{\infty} = (a; q)_{\infty} = \prod_{k=0}^{\infty} (1 - aq^k).$

We now introduce an intermediate theorem.

Theorem 1.8. (*Jacobi's Identity*) *We have*

$$\sum_{n=0}^{\infty} (-1)^n (2n+1) q^{\frac{n(n+1)}{2}} = (q; q)_{\infty}^3.$$

Proof. We make the substitution $x \rightarrow x^2q$ in the Jacobi Triple Product Identity to obtain

$$\begin{aligned} \sum_{k=-\infty}^{\infty} q^{k^2+k} x^{2k} &= (-x^2 q^2; q^2)_{\infty} \left(-\frac{1}{x^2}; q^2 \right)_{\infty} (q^2; q^2)_{\infty} \\ &= \left(1 + \frac{1}{x^2} \right) (-x^2 q^2; q^2)_{\infty} \left(-\frac{q^2}{x^2}; q^2 \right)_{\infty} (q^2; q^2)_{\infty}. \end{aligned}$$

This implies that

$$\frac{1}{x + \frac{1}{x}} \sum_{k=-\infty}^{\infty} x^{2k+1} q^{k^2+k} = (-x^2 q^2; q^2)_{\infty} \left(-\frac{q^2}{x^2}; q^2 \right)_{\infty} (q^2; q^2)_{\infty}.$$

We now take the limit as x tends towards i (the imaginary unit) of both sides of this equation. Note that $i + \frac{1}{i} = 0$ and

$$\sum_{k=-\infty}^{\infty} i^{2k+1} q^{k^2+k} = \sum_{k=0}^{\infty} (i^{2k+1} + i^{2(-k-1)+1}) q^{k^2+k} = 0.$$

Therefore, we may apply L'Hopital's Rule to obtain

$$\begin{aligned}
\lim_{x \rightarrow i} \frac{1}{x + \frac{1}{x}} \sum_{k=-\infty}^{\infty} x^{2k+1} q^{k^2+k} &= \frac{1}{2} \sum_{k=-\infty}^{\infty} (2k+1)(-1)^k q^{k^2+k} \\
&= \frac{1}{2} \left(\sum_{k=0}^{\infty} ((2k+1)(-1)^k + (2(-k-1)+1)(-1)^{-k-1}) q^k \right) \\
&= \sum_{k=0}^{\infty} (2k+1)(-1)^k q^{k^2+k}.
\end{aligned}$$

On the other hand, we also have

$$\lim_{x \rightarrow i} (-x^2 q^2; q^2)_{\infty} \left(-\frac{q^2}{x^2}; q^2 \right)_{\infty} (q^2; q^2)_{\infty}^3 = (q^2; q^2)_{\infty}^3.$$

This proves Jacobi's Identity. \square

We are now ready for our final interemediate theorem.

Theorem 1.9. (*Euler's Pentagonal Number Theorem*) *We have*

$$\sum_{k=-\infty}^{\infty} (-1)^k q^{\frac{k(3k-1)}{2}} = (q; q)_{\infty}.$$

Proof. We note that

$$(q; q)_{\infty} = (1 - q)(1 - q^2) \cdots = \sum_{k_1, k_2, \dots \in \{0, 1\}} q^{k_1 + 2k_2 + \dots} (-1)^{k_1 + k_2 + \dots}.$$

Therefore, the coefficient of q^n in $(q; q)_{\infty}$ is equal to the number of partitions of n into an even number of distinct parts minus the number of partitions of n into an odd number of distinct parts. We will define an involution on the set of partitions of a positive integer n to easily compute the difference. First, let us make the following definition. [Definition] Given a partition $P = p_1 + p_2 + \cdots + p_m$ into parts $p_1 > p_2 > \cdots > p_m$, define $f(P)$ be the largest index i so that $p_i = p_1 - i + 1$ and $g(P)$ to be the value of p_m . For example, for the partition $P = 3 + 2 + 1$ of 6, we have $f(P) = 3$ and $g(P) = 1$. We are now ready to define the involution.

- If a partition $P = p_1 + p_2 + \cdots + p_m$ into parts $p_1 > p_2 > \cdots > p_m$ satisfies $f(P) \geq g(P)$, then we map P to the partition

$$P' = (p_1 + 1) + (p_2 + 1) + \cdots + (p_m + 1) + p_{m+1} + \cdots + p_{m-1}.$$

For example, we map the partition $P = 7 + 6 + 5 + 4 + 2$ of 24 to the partition $P' = (7 + 1) + (6 + 1) + 5 + 4 = 8 + 7 + 5 + 4$. Note that $f(P') = p_m < p_{m-1} = g(P')$. Furthermore, P' has one less part than P .

- If a partition $P = p_1 + p_2 + \cdots + p_m$ into parts $p_1 > p_2 > \cdots > p_m$ satisfies $g(P) > f(P)$, then we set $f(P) = t$ and map P to the partition

$$P' = (p_1 - 1) + (p_2 - 1) + \cdots + (p_t - 1) + p_{t-1} + \cdots + p_m + t.$$

For example, we map the partition $P = 9 + 8 + 4 + 3$ of 24 to the partition $P' = (9 - 1) + (8 - 1) + 4 + 3 + 2 = 8 + 7 + 4 + 3 + 2$. Note that $f(P') \geq t = g(P')$. Furthermore, P' has one more part than P .

Note that this involution is not well defined for some partitions P . Indeed, all partitions P with $f(P) \geq g(P)$ and $g(P) \leq m-1$ are mapped to a unique partition into distinct parts, but when $g(P) = m$,

$$P' = (p_1 + 1) + (p_2 + 1) + \cdots + (p_m + 1) + p_{m+1} + \cdots + p_{m-1}$$

is not well-defined. As $f(P) \leq m$, the only partitions P satisfying $f(P) \geq g(P)$ that do not get mapped to a unique partition into distinct parts are those with $f(P) = g(P) = m$. Similarly, all partitions P with $g(P) > f(P)$ and $f(P) \leq m-1$ are mapped to a unique partition into distinct parts as $p_t - 1 > p_{t-1}$ by the definition of $f(P)$ and $p_m > t$ by assumption. However, if $f(P) = m$, then P is mapped to a unique partition into distinct parts only if $p_m - 1 > t$. This means that the only partitions P satisfying $g(P) > f(P)$ that do not get mapped to a unique partition into distinct parts are those with $f(P) = m$ and $g(P) = m+1$. For the partitions P whose image is a unique partition into distinct parts, however, it is verifiable that the image of P 's image is P . Therefore, all that remains is to characterize the n for which the exceptions of partitions described above may occur. The partitions P into m distinct parts satisfying $f(P) = g(P) = m$ are of the form $(2m-1) + (2m-2) + \cdots + m$, and the partitions P satisfying $f(P) = m$ and $g(P) = m+1$ are of the form $(2m) + (2m-1) + \cdots + (m+1)$. Such partitions occur only for n of the form $\frac{m(3m-1)}{2}$ or $\frac{m(3m+1)}{2} = \frac{-m(-3m-1)}{2}$. Therefore, the coefficient of q^n in $(q; q)_\infty$ is 0 unless n equals $\frac{m(3m-1)}{2}$ for some integer m , in which case it is $(-1)^m$. This proves Euler's Pentagonal Number Theorem. \square

Note that $\frac{j(3j-1)}{2} = \frac{(-j)(-3j+1)}{2}$, so we may rewrite Euler's Pentagonal Number Theorem as

$$\sum_{k=-\infty}^{\infty} (-1)^k q^{\frac{k(3k+1)}{2}} = (q; q)_{\infty}.$$

We are finally ready to put everything together and prove that $p(5k+4) \equiv 0 \pmod{5}$ for all nonnegative integers k . In what follows, we will say that two power series are congruent mod 5 if, for any $n \geq 0$, the coefficients of q^n in both power series are congruent mod 5. Let us consider the generating function

$$(q^5; q^5)_{\infty} \sum_{m=0}^{\infty} p(m) q^{m+1} = (1 - q^5 - q^{10} + q^{25} + \dots) \sum_{m=0}^{\infty} p(m) q^{m+1}.$$

Note that the coefficient of q^{5n+5} in this generating function is

$$p(5n+4) + (a_1 p(5n-1) + a_2 p(5n-6) + \dots),$$

where a_1, a_2, \dots are integers. Therefore, if we are able to prove that the coefficient of q^{5n+5} in this generating function above is always a multiple of 5, then it will follow by induction that $p(5n+4) \equiv 0 \pmod{5}$ for all $n \geq 0$ (for the base case, we have $p(4) = 5$). We may write

$$\begin{aligned} (q^5; q^5)_{\infty} \sum_{m=0}^{\infty} p(m) q^{m+1} &= \frac{(q; q^5)_{\infty}}{(q; q)_{\infty}} \\ &= q(q; q)_{\infty}^4 \frac{(q^5; q^5)_{\infty}}{(q; q)_{\infty}^5}. \end{aligned}$$

We have

$$\frac{1}{(q; q)_{\infty}^5} = \prod_{k=1}^{\infty} (1 + q^k + q^{2k} + \dots)^5.$$

Taking the coefficients mod 5, we have

$$\prod_{k=1}^{\infty} (1 + q^k + q^{2k} + \dots)^5 \equiv \prod_{k=1}^{\infty} (1 + q^{5k} + q^{10k} + \dots) \pmod{5}.$$

Therefore,

$$\frac{(q^5; q^5)_{\infty}}{(q; q)_{\infty}^5} \equiv \prod_{k=1}^{\infty} (1 - q^{5k})(1 + q^{5k} + q^{10k} + \dots) \equiv 1 \pmod{5}.$$

We now have

$$\begin{aligned}
q(q; q)_\infty^4 \frac{(q^5; q^5)_\infty}{(q; q)_\infty^5} &\equiv q(q; q)_\infty^4 \pmod{5} \\
&\equiv q(q; q)_\infty^3 (q; q)_\infty \pmod{5} \\
&\equiv q \left(\sum_{k=0}^{\infty} (-1)^k (2k+1) q^{\frac{k(k+1)}{2}} \right) \left(\sum_{j=-\infty}^{\infty} (-1)^j q^{\frac{j(3j+1)}{2}} \right) \pmod{5} \\
&\equiv \sum_{j=-\infty}^{\infty} \sum_{k=0}^{\infty} (-1)^{j+k} (2k+1) q^{1+\frac{k(k+1)}{2}+\frac{j(3j+1)}{2}} \pmod{5}.
\end{aligned}$$

We claim that all integers j and k for which

$$1 + \frac{k(k+1)}{2} + \frac{j(3j+1)}{2} \equiv 0 \pmod{5}$$

satisfy $2k+1 \equiv 0 \pmod{5}$, which would prove that the coefficient of q^{5n+5} is a multiple of 5 for all $n \geq 0$. We note that

$$2(j+1)^2 + (2k+1)^2 = 8 \left(1 + \frac{j(3j+1)}{2} + \frac{k(k+1)}{2} \right) - 10j^2 - 5.$$

Therefore, if

$$1 + \frac{k(k+1)}{2} + \frac{j(3j+1)}{2} \equiv 0 \pmod{5},$$

then we also have

$$2(j+1)^2 + (2k+1)^2 \equiv 0 \pmod{5}.$$

As $(\frac{-2}{5}) = -1$, this implies that $j+1 \equiv 2k+1 \equiv 0 \pmod{5}$, and we are done.

References

- [1] Qiaochu Yuan, *Young diagrams, q-analogues, and one of my favorite proofs*, Wordpress, 2009, .
- [2] Evangelos Kobotis, *Project Jacobi Triple Product Identity - 15 - Proof of the Triple Product Identity*, 2025, .
- [3] Dick Koch, *The Pentagonal Number Theorem and All That*, University of Oregon, 2016, .