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Abstract

In this paper, we will explore an algebraic/number theoretic method
of interpreting the partition function p(n), which equals the number
of ways to express n as a sum of (not necessarily distinct) positive
integers (we will call each of these summands “parts”), where order
does not matter. This seemingly unwieldy function has a surprisingly

clean asymptotic formula found by Ramanujan and Hardy, namely

p(n) ~ 4n1\/§e”\/ E However, this asymptotic formula does not help

in determining the number theoretic properties of p(n); it is impossible
to tell from it, for instance, when p(n) is even. This makes Ramanu-
jan’s discovery that p(5k +4) = 0 (mod 5) for any nonnegative integer
k extremely impressive. In this paper we will develop a generating
function analogue for partitions to prove several results about par-
titions, ending with Ramanujan’s celebrated p(5k +4) = 0 (mod 5)
congruence.

1 q Analogues

We have the well-known generating function
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Indeed, writing the right hand side as
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we see that each term in the product of the form 1+¢*+¢%*+- - - corresponds
to the number of £’s in a partition. For example, the term
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in the product would correspond to the partition 14+ 1+ 244 = 8.
It is natural to modify p(n) slightly and derive similar generating func-
tions, which we do below.

Definition 1.1 (Definition). We will denote gm(n) to be the number of
partitions of n into at most m parts and ry,(n) to be the number of partitions
of n into parts that are at most m.

Claim 1.2. For all positive integers m and n, we have gn(n) = rmy,(n).

Proof. The claim is true for m = 1 as we have ¢1(n) = r1(n) for all n, so we
will assume that m > 2.
We may use a similar argument as above to see that

oo m 1
St =TT 2
n=0 e 4

Therefore, it suffices to prove that
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We note that we may extend each partition of n into at most m positive
parts to a partition of n into exactly m nonnegative parts by appending 0’s.
Therefore, we have
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Definition 1.3 (Definition). Given variables A1, ..., Ak, q1,...,q¢ and a se-
ries S where each term is of the form A{*--- A\*q*™ -+ q,*** for integers
€1,-..,CLte, we define S>2 (S) to be the series obtained by removing all terms

with negative exponents and setting all \;’s equal to 1 for the other terms.
For example,

Q (@A A2+ @fAide) = g

Then, we may write

E : qn1+n2+---+nm — §>2 § ' qn1+n2+---+nm)\7111—712)\32—713 . )\:lnnrlrnm.
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The right hand side further equals
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Lemma 1.4. We have
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Now, we apply our Lemma with © = ¢q, y = gA2, and A = \; to write
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This would remove all terms with a negative exponent on A\; and set \; =1
for all other terms. We apply our Lemma again with = ¢, y = ¢)\3, and
A = Ay to write
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This would remove all terms with a negative exponent on Ag and set Ay =1
for all other terms. We may continue doing this to find that
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This proves that g, (n) = r,(n) for all positive integers m and n. O

Having seen the power of partition generating functions in turning com-
binatorial problems into algebraic ones, we now dedicate the remainder of
the paper to proving the number theoretic p(5k +4) = 0 (mod 5). We will
need to prove several intermediate theorems along the way. [Definition]| Fix
two positive integers m and n, and define the generating function

Rq(m, n) — E q 1+ka+-+ m
n>k1>ko > >km >0

Claim 1.5. For all positive integers m,n > 2, we have
Ry(m,n) = Rg(m,n — 1) 4+ ¢"Ry(m — 1,n).

Proof. We have
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= Ry(m,n —1) + ¢"Ry(m — 1,n).



[Definition] For all positive integers n, we will denote
(n)y=Ryn—1,1)=1+q+---+¢g" .
We will further denote
(n)lg = (n)g(n —1)g -~ (1)g.
Claim 1.6. For all positive integers m and n, we have

(m+n)l,
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Proof. The result is true for m =1 as

(n+ 1),
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Similarly, the result is true for n =1 as

Ry(1,n) = =1l4+q+-+4q"

Ry(m,1) = L =14qg+-+q™

q

We now prove the result for general m and n by induction on m + n, with
the base cases of m +n = 2,3 already covered above. We now assume that,
for some positive integer k, the result holds for all m + n = k, and we will
prove that the result holds for all m+n =k+1.If m =1 or n =1, then we
may use the argument above. We will now assume that m,n > 2. We apply
the inductive hypothesis to find that

Ry(m,n) = Ry(m,n — 1) + q" Ry(m — 1,m)
_ (m—l—n—l)' +(m—|—n—1)
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— (m)ly(n)ly
This completes the inductive step. =



Note that we may write

(I—¢g™m)---(1-9q)
(I=gm)---(1=q)(1—¢")---(1—q)

We now prove an important theorem.

Ry(m,n) =

Theorem 1.7. (Jacobi Triple Product Identity) We have
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Proof. We first observe that

k=0 \n>z1>x2>>x>0

We note that the right hand side equals
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By our previous definition of R,(m,n), this further equals

Z R,(k,n — k)qk(k;l) z.

We now make the substitution z — —% to obtain

(L=a)(1=aq)- (12" ") =D Ry(kn—k)g > ()"

We further make the substitution n — 2n to obtain

1—a2)1—=zq)---(L—2¢®™ ") =) Ry(k,2n—k)g z (—a)".

We may rewrite the left hand side as
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We make the substitution z — q% to obtain
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We multiply both of these expressions by ¢~ 2 (—z)™" to obtain
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We make the substitution & — —n + k, so that the right hand side becomes
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k=—n

Now, note that fixing k& and letting n tend toward infinity, we have
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as the numerator tends to [[>_;(1 — ¢™) and the denominator tends to

(TI°°_, (1 — ¢™))*. Therefore, letting n tend to infinity on both sides of the
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we have
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Therefore, we have
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We now substitute ¢ — ¢? and x — —xq to get that
o0

00
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as desired. O
[Definition] We will define the following.
o (@) = (a;0)n = [T[}5(1 — ag").
o (@)oo = (a;9)o0 = [I5Z0(1 — ag").

We now introduce an intermediate theorem.

Theorem 1.8. (Jacobi’s Identity) We have

S (=1rEn+ 1) = (g9)%

n=0

Proof. We make the substitution x — 2¢ in the Jacobi Triple Product
Identity to obtain
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This implies that
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We now take the limit as x tends towards ¢ (the imaginary unit) of both
sides of this equation. Note that i + % =0 and
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Therefore, we may apply L’Hopital’s Rule to obtain
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On the other hand, we also have
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This proves Jacobi’s Identity. O

We are now ready for our final interemediate theorem.

Theorem 1.9. (Euler’s Pentagonal Number Theorem) We have

o0

k(3k—1)
Y (=D T = (g9
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Proof. We note that
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Therefore, the coefficient of ¢" in (¢; ¢)~ is equal to the number of partitions
of n into an even number of distinct parts minus the number of partitions
of n into an odd number of distinct parts. We will define an involution on
the set of partitions of a positive integer n to easily compute the difference.
First, let us make the following definition. [Definition] Given a partition
P = py 4+ pa+ -+ + pp into parts p; > py > -+ > py, define f(P) be
the largest index ¢ so that p; = p1 —i + 1 and g(P) to be the value of py,.
For example, for the partition P = 34 2 + 1 of 6, we have f(P) = 3 and
g(P) = 1. We are now ready to define the involution.



o If a partition P = p; + pa + -+ + py, into parts p1 > pa > -+ > pm
satisfies f(P) > g(P), then we map P to the partition

Pl:(p1+1)+(p2+1)++(ppm+1)+ppm+1++pm—1

For example, we map the partition P =7+ 6+ 5+ 4 + 2 of 24 to the
partition P/ = (74+ 1)+ (6 +1)+5+4 =8+ 7+ 5+ 4. Note that
f(P) = pm < pm—1 = g(P'). Furthermore, P’ has one less part than
P.

o If a partition P = p; + p2 + - - - + ppy into parts p;1 > p2 > -+ > ppy
satisfies g(P) > f(P), then we set f(P) =t and map P to the partition

Pr=pi—1D+ @2+ + @~ 1) +p—1+-+pm+t.

For example, we map the partition P = 9+ 8 + 4 + 3 of 24 to the
partition P/ = (9 —1)+ (8 —1)+4+3+2=8+7+4+ 3+ 2. Note
that f(P') >t = g(P’). Furthermore, P’ has one more part than P.

Note that this involution is not well defined for some partitions P. Indeed,
all partitions P with f(P) > ¢g(P) and g(P) < m—1 are mapped to a unique
partition into distinct parts, but when g(P) = m,

P =pi+1)+ @+ + -+ ®p, + 1)+ Dppt1 + - + D1

is not well-defined. As f(P) < m, the only partitions P satisfying f(P) >
g(P) that do not get mapped to a unique partition into distinct parts are
those with f(P) = g(P) = m. Similarly, all partitions P with g(P) > f(P)
and f(P) < m — 1 are mapped to a unique partition into distinct parts as
pt —1 > py—1 by the definition of f(P) and p,, > t by assumption. However,
if f(P) = m, then P is mapped to a unique partition into distinct parts only
if p;, — 1 > t. This means that the only partitions P satisfying g(P) > f(P)
that do not get mapped to a unique partition into distinct parts are those
with f(P) = m and g(P) = m + 1. For the partitions P whose image
is a unique partition into distinct parts, however, it is verifiable that the
image of P’s image is P. Therefore, all that remains is to characterize the
n for which the exceptions of partitions described above may occur. The
partitions P into m distinct parts satisfying f(P) = g(P) = m are of the
form (2m—1)+(2m—2)+---+m, and the partitions P satisfying f(P) =m
and g(P) = m + 1 are of the form (2m) + (2m — 1) +--- 4+ (m + 1). Such

partitions occut only for n of the form m(372n71) or m(ST;H) = 7m(723m71).
Therefore, the coefficient of ¢" in (¢;¢)oo is 0 unless n equals % for

some integer m, in which case it is (—1)™. This proves Euler’s Pentagonal
Number Theorem. O
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Note that 2 (3]'271) = = )(ggj H), so we may rewrite Euler’s Pentagonal
Number Theorem as
> k(3k+1
> (-1 U = (g 0)oe.

k=—o0

We are finally ready to put everything together and prove that p(5k+4) =0
(mod 5) for all nonnegative integers k. In what follows, we will say that two
power series are congruent mod 5 if, for any n > 0, the coefficients of ¢"
in both power series are congruent mod 5. Let us consider the generating
function

o o
(0% 0°)oe Y p(m)g™ ' = (1= ¢° —¢" 0+ ¢® +--) Y p(m)g™ .
m=0 m=0

Note that the coefficient of ¢°"*5 in this generating function is
p(dn +4) + (a1p(5n — 1) + azp(5n — 6) + - -+ ),

where a1, as,... are integers. Therefore, if we are able to prove that the
coefficient of ¢°**® in this generating function above is always a multiple of
5, then it will follow by induction that p(5n +4) = 0 (mod 5) for all n > 0
(for the base case, we have p(4) = 5). We may write

00 5.5
(@) 3 plm)gmtt = L)
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_ q(q, q)4 (q5;q5)00
T (4 9)3
We have
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Taking the coefficients mod 5, we have

o0 o0
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Therefore,
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We now have
5.5
4359 )oo
q(q;q)ﬁo((q, q)g), q9(¢;9)a (mod 5)

2(4;9)3,(¢:9)  (mod 5)

q<Z( D*(2k + 1)g '““““)) S (17" 5| (mod 5)

k=0 j=—o00
> Bl41) | 74D
= Z Z IR 2k +1)¢tt +Ag (mod 5).
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We claim that all integers j and k for which
E(k+1)  j(3j+1)
2 + 2

satisfy 2k +1 =0 (mod 5), which would prove that the coefficient of ¢°**°
is a multiple of 5 for all n > 0. We note that

JBi+) k(k:+1)) o

1+ =0 (mod5)

2(j+1)2+(2k+1)2:8<1+ 5 5

Therefore, if
k(k+1) n Jj3j+1)

1
+ 2 2

=0 (mod 5),
then we also have
2(j+1)°+ (2k+1)>=0 (mod 5).

As (=2) = —1, this implies that j+ 1 = 2k + 1 = 0 (mod 5), and we are
done.
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