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Abstract

In this paper, we will explore an algebraic/number theoretic method
of interpreting the partition function p(n), which equals the number
of ways to express n as a sum of (not necessarily distinct) positive
integers (we will call each of these summands “parts”), where order
does not matter. This seemingly unwieldy function has a surprisingly
clean asymptotic formula found by Ramanujan and Hardy, namely

p(n) ∼ 1
4n

√
3
eπ
√

2n
3 . However, this asymptotic formula does not help

in determining the number theoretic properties of p(n); it is impossible
to tell from it, for instance, when p(n) is even. This makes Ramanu-
jan’s discovery that p(5k+4) ≡ 0 (mod 5) for any nonnegative integer
k extremely impressive. In this paper we will develop a generating
function analogue for partitions to prove several results about par-
titions, ending with Ramanujan’s celebrated p(5k + 4) ≡ 0 (mod 5)
congruence.

1 q Analogues

We have the well-known generating function

∞∑
n=0

p(n)qn =

∞∏
k=1

1

1− qk
.

Indeed, writing the right hand side as

(q0·1 + q1·1 + q2·1 + · · · )(q0·2 + q1·2 + q2·2 + · · · )(q0·3 + q1·3 + q2·3 + · · · ) · · · ,

we see that each term in the product of the form 1+qk+q2k+· · · corresponds
to the number of k’s in a partition. For example, the term

q2·1 · q1·2 · q0·3 · q1·4 · q0·5 · q0·6 · · · = q8
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in the product would correspond to the partition 1 + 1 + 2 + 4 = 8.
It is natural to modify p(n) slightly and derive similar generating func-

tions, which we do below.

Definition 1.1 (Definition). We will denote qm(n) to be the number of
partitions of n into at most m parts and rm(n) to be the number of partitions
of n into parts that are at most m.

Claim 1.2. For all positive integers m and n, we have qm(n) = rm(n).

Proof. The claim is true for m = 1 as we have q1(n) = r1(n) for all n, so we
will assume that m ≥ 2.

We may use a similar argument as above to see that

∞∑
n=0

rm(n)qn =
m∏
k=1

1

1− qk
.

Therefore, it suffices to prove that

∞∑
n=0

qm(n)qn =

m∏
k=1

1

1− qk
.

We note that we may extend each partition of n into at most m positive
parts to a partition of n into exactly m nonnegative parts by appending 0’s.
Therefore, we have

∞∑
n=0

qm(n)qn =
∑

n1≥n2≥···≥nm≥0

qn1+n2+···+nm .

Definition 1.3 (Definition). Given variables λ1, . . . , λk, q1, . . . , qℓ and a se-
ries S where each term is of the form λe1

1 · · ·λek
k q

ek+1

1 · · · qek+ℓ

ℓ for integers
e1, . . . , ek+ℓ, we define Ω≥

(S) to be the series obtained by removing all terms

with negative exponents and setting all λi’s equal to 1 for the other terms.
For example,

Ω
≥

(q1q2λ
−1
1 λ2 + q21λ1λ2) = q21.

Then, we may write∑
n1≥n2≥···≥nm≥0

qn1+n2+···+nm = Ω
≥

∑
n1,n2,...,nm≥0

qn1+n2+···+nmλn1−n2
1 λn2−n3

2 · · ·λnm−1−nm

m−1 .

The right hand side further equals

Ω
≥

∞∑
n1=0

(qλ1)
n1

∞∑
n2=0

(
qλ2

λ1

)n2

· · ·
∞∑

nm−1=0

(
qλm−1

λm−2

)nm−1 ∞∑
nm=0

(
q

λm−1

)nm

.
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Lemma 1.4. We have

Ω
≥

∞∑
n=0

(λx)n
∞∑

m=0

(y/λ)m =
∞∑
k=0

xk
∞∑

m=0

(xy)m.

Proof. We have

Ω
≥

( ∞∑
n=0

(λx)n

)( ∞∑
m=0

(y/λ)m

)
= Ω

≥

∞∑
n=0

(λx)n
∞∑

m=0

(y/λ)m

= Ω
≥

∞∑
n=0

∞∑
m=0

λn−mxnym

= Ω
≥

∞∑
n=m

∞∑
m=0

xnym

=
∞∑

m=0

∞∑
n=m

xnym

=

∞∑
m=0

(xy)m
∞∑
k=0

xk

=
∞∑
k=0

xk
∞∑

m=0

(xy)m.

Now, we apply our Lemma with x = q, y = qλ2, and λ = λ1 to write

Ω
≥

∞∑
n1=0

(qλ1)
n1

∞∑
n2=0

(
qλ2

λ1

)n2

=
∞∑
k=0

qk
∞∑

m=0

(q2λ2)
m.

This would remove all terms with a negative exponent on λ1 and set λ1 = 1
for all other terms. We apply our Lemma again with x = q2, y = qλ3, and
λ = λ2 to write

Ω
≥

∞∑
k=0

qk
∞∑

m=0

(q2λ2)
m

∞∑
n3=0

(
qλ3

λ2

)n3

=

( ∞∑
k=0

qk

)(
Ω
≥

∞∑
m=0

(q2λ2)
m

∞∑
n3=0

(
qλ3

λ2

)n3
)

=

∞∑
k=0

qk
∞∑
ℓ=0

q2ℓ
∞∑

m=0

(q3λ3)
m.
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This would remove all terms with a negative exponent on λ2 and set λ2 = 1
for all other terms. We may continue doing this to find that

Ω
≥

∞∑
n1=0

(qλ1)
n1

∞∑
n2=0

(
qλ2

λ1

)n2

· · ·
∞∑

nm−1=0

(
qλm−1

λm−2

) ∞∑
nm=0

(
q

λm−1

)nm

equals
∞∑

k1=0

qk1
∞∑

k2=0

q2k2 · · ·
∞∑

km=0

qmkm .

We have

∞∑
k1=0

qk1
∞∑

k2=0

q2k2 · · ·
∞∑

km=0

qmkm =
1

(1− q)(1− q2) · · · (1− qm)
.

This proves that qm(n) = rm(n) for all positive integers m and n.

Having seen the power of partition generating functions in turning com-
binatorial problems into algebraic ones, we now dedicate the remainder of
the paper to proving the number theoretic p(5k + 4) ≡ 0 (mod 5). We will
need to prove several intermediate theorems along the way. [Definition] Fix
two positive integers m and n, and define the generating function

Rq(m,n) =
∑

n≥k1≥k2≥···≥km≥0

qk1+k2+···+km .

Claim 1.5. For all positive integers m,n ≥ 2, we have

Rq(m,n) = Rq(m,n− 1) + qnRq(m− 1, n).

Proof. We have

Rq(m,n) =
∑

n≥k1≥k2≥···≥km≥0

qk1+k2+···+km

=
∑

n>k1≥k2≥···≥km≥0

qk1+k2+···+km +
∑

n=k1≥k2≥···≥km

qk1+k2+···+km

=
∑

n−1≥k1≥k2≥···≥km

qk1+k2+···+km + qn
∑

n≥k2≥···≥km≥0

qk2+···+km

= Rq(m,n− 1) + qnRq(m− 1, n).
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[Definition] For all positive integers n, we will denote

(n)q = Rq(n− 1, 1) = 1 + q + · · ·+ qn−1.

We will further denote

(n)!q = (n)q(n− 1)q · · · (1)q.

Claim 1.6. For all positive integers m and n, we have

Rq(m,n) =
(m+ n)!q
(m)!q(n)!q

.

Proof. The result is true for m = 1 as

Rq(1, n) =
(n+ 1)!q
(n)!q(1)!q

= 1 + q + · · ·+ qn.

Similarly, the result is true for n = 1 as

Rq(m, 1) =
(m+ 1)!q
(m)!q(1)!q

= 1 + q + · · ·+ qm.

We now prove the result for general m and n by induction on m + n, with
the base cases of m+ n = 2, 3 already covered above. We now assume that,
for some positive integer k, the result holds for all m + n = k, and we will
prove that the result holds for all m+n = k+1. If m = 1 or n = 1, then we
may use the argument above. We will now assume that m,n ≥ 2. We apply
the inductive hypothesis to find that

Rq(m,n) = Rq(m,n− 1) + qnRq(m− 1, n)

=
(m+ n− 1)!q
(m)!q(n− 1)!q

+
(m+ n− 1)!q
(m− 1)!q(n)!q

=
(m+ n− 1)!q(q

n(m)q + (n)q)

(m)!q(n)!q

=
(m+ n− 1)!q(q

n(1 + q + · · ·+ qm−1) + (1 + q + · · ·+ qn−1))

(m)!q(n)!q

=
(m+ n)!q
(m)!q(n)!q

.

This completes the inductive step.
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Note that we may write

Rq(m,n) =
(1− qm+n) · · · (1− q)

(1− qm) · · · (1− q)(1− qn) · · · (1− q)
.

We now prove an important theorem.

Theorem 1.7. (Jacobi Triple Product Identity) We have

∞∏
m=1

(1− q2m)(1 + xq2m−1)(1− x−1q2m−1) =
∞∑

k=−∞
qk

2
xk,

Proof. We first observe that

(1 + xq)(1 + xq2) · · · (1 + xqn) =
n∑

k=0

 ∑
n≥x1>x2>···>xk>0

qx1+x2+···+xk

xk.

We note that the right hand side equals

n∑
k=0

 ∑
n−k≥x1−k≥x2−(k−1)≥···≥xk−1≥0

q(x1−k)+(x2−(k−1))+···+(xk−1)q
k(k+1)

2

xk.

By our previous definition of Rq(m,n), this further equals

n∑
k=0

Rq(k, n− k)q
k(k+1)

2 xk.

We now make the substitution x → −x
q to obtain

(1− x)(1− xq) · · · (1− xqn−1) =

n∑
k=0

Rq(k, n− k)q
k(k−1)

2 (−x)k.

We further make the substitution n → 2n to obtain

(1− x)(1− xq) · · · (1− xq2n−1) =

n∑
k=0

Rq(k, 2n− k)q
k(k−1)

2 (−x)k.

We may rewrite the left hand side as

(−x)nq
n(n−1)

2 (1−x−1)(1−x−1q−1) · · · (1−x−1q−n+1)(1−xqn) · · · (1−xq2n−1).
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We make the substitution x → x
qn to obtain(

− x

qn

)n

q
n(n−1)

2 (1−x−1q)(1−x−1q2) · · · (1−x−1qn)(1−x)(1−xq) · · · (1−xqn−1)

equals
n∑

k=0

Rq(k, 2n− k)q
k(k−1)

2

(
− x

qn

)k

.

We multiply both of these expressions by q
n(n+1)

2 (−x)−n to obtain

(1−x−1q) · · · (1−x−1qn)(1−x) · · · (1−xqn−1) =
2n∑
k=0

Rq(k, 2n−k)q
(n−k)(n−k+1)

2 (−x)−n+k.

We make the substitution k → −n+ k, so that the right hand side becomes

n∑
k=−n

Rq(n+ k, n− k)q
k(k−1)

2 (−x)k.

Now, note that fixing k and letting n tend toward infinity, we have

lim
n→∞

Rq(n+k, n−k) = lim
n→∞

(1− q2n) · · · (1− q)

(1− qn+k) · · · (1− q)(1− qn−k) · · · (1− q)
=

∞∏
m=1

1

1− qm
,

as the numerator tends to
∏∞

m=1(1 − qm) and the denominator tends to

(
∏∞

m=1(1− qm))2 . Therefore, letting n tend to infinity on both sides of the
equation

(1−x−1q) · · · (1−x−1qn)(1−x) · · · (1−xqn−1) =
n∑

k=−n

Rq(n+k, n−k)q
k(k−1)

2 (−x)k,

we have

∞∏
m=1

(1− x−1qm)(1− xqm−1) =

∞∏
m=1

1

1− qm

∞∑
k=−∞

q
k(k−1)

2 (−x)k.

Therefore, we have

∞∏
m=1

(1− x−1qm)(1− xqm−1)(1− qm) =

∞∑
k=−∞

q
k(k−1)

2 (−x)k.
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We now substitute q → q2 and x → −xq to get that

∞∏
m=1

(1− q2m)(1 + xq2m−1)(1− x−1q2m−1) =
∞∑

k=−∞
qk

2
xk,

as desired.

[Definition] We will define the following.

• (a)n = (a; q)n =
∏n−1

k=0(1− aqk).

• (a)∞ = (a; q)∞ =
∏∞

k=0(1− aqk).

We now introduce an intermediate theorem.

Theorem 1.8. (Jacobi’s Identity) We have

∞∑
n=0

(−1)n(2n+ 1)q
n(n+1)

2 = (q; q)3∞.

Proof. We make the substitution x → x2q in the Jacobi Triple Product
Identity to obtain

∞∑
k=−∞

qk
2+kx2k = (−x2q2; q2)∞

(
− 1

x2
; q2
)

∞
(q2; q2)∞

=

(
1 +

1

x2

)
(−x2q2; q2)∞

(
− q2

x2
; q2
)

∞
(q2; q2)∞.

This implies that

1

x+ 1
x

∞∑
k=−∞

x2k+1qk
2+k = (−x2q2; q2)∞

(
− q2

x2
; q2
)

∞
(q2; q2)∞.

We now take the limit as x tends towards i (the imaginary unit) of both
sides of this equation. Note that i+ 1

i = 0 and

∞∑
k=−∞

i2k+1qk
2+k =

∞∑
k=0

(i2k+1 + i2(−k−1)+1)qk
2+k = 0.
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Therefore, we may apply L’Hopital’s Rule to obtain

lim
x→i

1

x+ 1
x

∞∑
k=−∞

x2k+1qk
2+k =

1

2

∞∑
k=−∞

(2k + 1)(−1)kqk
2+k.

=
1

2

( ∞∑
k=0

((2k + 1)(−1)k + (2(−k − 1) + 1)(−1)−k−1)qk

)

=

∞∑
k=0

(2k + 1)(−1)kqk
2+k.

On the other hand, we also have

lim
x→i

(−x2q2; q2)∞

(
− q2

x2
; q2
)

∞
(q2; q2)∞ = (q2; q2)3∞.

This proves Jacobi’s Identity.

We are now ready for our final interemediate theorem.

Theorem 1.9. (Euler’s Pentagonal Number Theorem) We have

∞∑
k=−∞

(−1)kq
k(3k−1)

2 = (q; q)∞.

Proof. We note that

(q; q)∞ = (1− q)(1− q2) · · · =
∑

k1,k2,···∈{0,1}

qk1+2k2+···(−1)k1+k2+···.

Therefore, the coefficient of qn in (q; q)∞ is equal to the number of partitions
of n into an even number of distinct parts minus the number of partitions
of n into an odd number of distinct parts. We will define an involution on
the set of partitions of a positive integer n to easily compute the difference.
First, let us make the following definition. [Definition] Given a partition
P = p1 + p2 + · · · + pm into parts p1 > p2 > · · · > pm, define f(P ) be
the largest index i so that pi = p1 − i + 1 and g(P ) to be the value of pm.
For example, for the partition P = 3 + 2 + 1 of 6, we have f(P ) = 3 and
g(P ) = 1. We are now ready to define the involution.
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• If a partition P = p1 + p2 + · · · + pm into parts p1 > p2 > · · · > pm
satisfies f(P ) ≥ g(P ), then we map P to the partition

P ′ = (p1 + 1) + (p2 + 1) + · · ·+ (ppm + 1) + ppm+1 + · · ·+ pm−1.

For example, we map the partition P = 7 + 6 + 5 + 4 + 2 of 24 to the
partition P ′ = (7 + 1) + (6 + 1) + 5 + 4 = 8 + 7 + 5 + 4. Note that
f(P ′) = pm < pm−1 = g(P ′). Furthermore, P ′ has one less part than
P.

• If a partition P = p1 + p2 + · · · + pm into parts p1 > p2 > · · · > pm
satisfies g(P ) > f(P ), then we set f(P ) = t and map P to the partition

P ′ = (p1 − 1) + (p2 − 1) + · · ·+ (pt − 1) + pt−1 + · · ·+ pm + t.

For example, we map the partition P = 9 + 8 + 4 + 3 of 24 to the
partition P ′ = (9− 1) + (8− 1) + 4 + 3 + 2 = 8 + 7 + 4 + 3 + 2. Note
that f(P ′) ≥ t = g(P ′). Furthermore, P ′ has one more part than P.

Note that this involution is not well defined for some partitions P. Indeed,
all partitions P with f(P ) ≥ g(P ) and g(P ) ≤ m−1 are mapped to a unique
partition into distinct parts, but when g(P ) = m,

P ′ = (p1 + 1) + (p2 + 1) + · · ·+ (ppm + 1) + ppm+1 + · · ·+ pm−1

is not well-defined. As f(P ) ≤ m, the only partitions P satisfying f(P ) ≥
g(P ) that do not get mapped to a unique partition into distinct parts are
those with f(P ) = g(P ) = m. Similarly, all partitions P with g(P ) > f(P )
and f(P ) ≤ m − 1 are mapped to a unique partition into distinct parts as
pt−1 > pt−1 by the definition of f(P ) and pm > t by assumption. However,
if f(P ) = m, then P is mapped to a unique partition into distinct parts only
if pm− 1 > t. This means that the only partitions P satisfying g(P ) > f(P )
that do not get mapped to a unique partition into distinct parts are those
with f(P ) = m and g(P ) = m + 1. For the partitions P whose image
is a unique partition into distinct parts, however, it is verifiable that the
image of P ’s image is P. Therefore, all that remains is to characterize the
n for which the exceptions of partitions described above may occur. The
partitions P into m distinct parts satisfying f(P ) = g(P ) = m are of the
form (2m−1)+(2m−2)+ · · ·+m, and the partitions P satisfying f(P ) = m
and g(P ) = m + 1 are of the form (2m) + (2m − 1) + · · · + (m + 1). Such

partitions occut only for n of the form m(3m−1)
2 or m(3m+1)

2 = −m(−3m−1)
2 .

Therefore, the coefficient of qn in (q; q)∞ is 0 unless n equals m(3m−1)
2 for

some integer m, in which case it is (−1)m. This proves Euler’s Pentagonal
Number Theorem.
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Note that j(3j−1)
2 = (−j)(−3j+1)

2 , so we may rewrite Euler’s Pentagonal
Number Theorem as

∞∑
k=−∞

(−1)kq
k(3k+1)

2 = (q; q)∞.

We are finally ready to put everything together and prove that p(5k+4) ≡ 0
(mod 5) for all nonnegative integers k. In what follows, we will say that two
power series are congruent mod 5 if, for any n ≥ 0, the coefficients of qn

in both power series are congruent mod 5. Let us consider the generating
function

(q5; q5)∞

∞∑
m=0

p(m)qm+1 = (1− q5 − q10 + q25 + · · · )
∞∑

m=0

p(m)qm+1.

Note that the coefficient of q5n+5 in this generating function is

p(5n+ 4) + (a1p(5n− 1) + a2p(5n− 6) + · · · ),

where a1, a2, . . . are integers. Therefore, if we are able to prove that the
coefficient of q5n+5 in this generating function above is always a multiple of
5, then it will follow by induction that p(5n+ 4) ≡ 0 (mod 5) for all n ≥ 0
(for the base case, we have p(4) = 5). We may write

(q5; q5)∞

∞∑
m=0

p(m)qm+1 =
q(q5; q5)∞
(q; q)∞

= q(q; q)4∞
(q5; q5)∞
(q; q)5∞

.

We have
1

(q; q)5∞
=

∞∏
k=1

(1 + qk + q2k + · · · )5.

Taking the coefficients mod 5, we have

∞∏
k=1

(1 + qk + q2k + · · · )5 ≡
∞∏
k=1

(1 + q5k + q10k + · · · ) (mod 5).

Therefore,

(q5; q5)∞
(q; q)5∞

≡
∞∏
k=1

(1− q5k)(1 + q5k + q10k + · · · ) ≡ 1 (mod 5).
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We now have

q(q; q)4∞
(q5; q5)∞
(q; q)5∞

≡ q(q; q)4∞ (mod 5)

≡ q(q; q)3∞(q; q)∞ (mod 5)

≡ q

( ∞∑
k=0

(−1)k(2k + 1)q
k(k+1)

2

) ∞∑
j=−∞

(−1)jq
j(3j+1)

2

 (mod 5)

≡
∞∑

j=−∞

∞∑
k=0

(−1)j+k(2k + 1)q1+
k(k+1)

2
+

j(3j+1)
2 (mod 5).

We claim that all integers j and k for which

1 +
k(k + 1)

2
+

j(3j + 1)

2
≡ 0 (mod 5)

satisfy 2k + 1 ≡ 0 (mod 5), which would prove that the coefficient of q5n+5

is a multiple of 5 for all n ≥ 0. We note that

2(j + 1)2 + (2k + 1)2 = 8

(
1 +

j(3j + 1)

2
+

k(k + 1)

2

)
− 10j2 − 5.

Therefore, if

1 +
k(k + 1)

2
+

j(3j + 1)

2
≡ 0 (mod 5),

then we also have

2(j + 1)2 + (2k + 1)2 ≡ 0 (mod 5).

As
(−2

5

)
= −1, this implies that j + 1 ≡ 2k + 1 ≡ 0 (mod 5), and we are

done.
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