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ABSTRACT

In this paper, we explore well-known combinatorial designs, focusing on balanced incom-
plete block designs (BIBDs). First we define BIBDs with the example of the Fano plane, and
prove some basic properties relating their parameters. Next, we employ linear algebra tech-
niques on the incidence matrix of a BIBD to prove the famous Fisher’s inequality. Finally,
we discuss finite projective planes and how they relate to BIBDs.

1. BALANCED INCOMPLETE BLOCK DESIGNS

Definition 1.1. A design is defined as a pair (V,B), where V is a finite set of elements,
called points, and B is a collection of nonempty subsets of V', called blocks.

Note that B is a multiset, so it is allowed to have repeated blocks. However, we are
mainly interested in designs without repeated blocks, which are called simple designs. Some
interesting designs have symmetric properties based on the sizes of the blocks and the points
shared between blocks. We give them a special name:

Definition 1.2. For t € N, a t-design is a design (V, B) such that each block in B has the
same number of points, and there is a constant \; such that any ¢-tuple of points in V' can
be found in exactly A; blocks in B.

We will look closer at the balanced incomplete block designs (BIBDs), which are designs
that have a few properties satisfied that give them additional structure. We specify the type
of BIBD based on five parameters: v, b, r, k, and \.

Definition 1.3. For positive integers v,b,r, k, A\ with 2 < k < v, a (v,b,7r,k, \)-BIBD is a
design (V, B) that satisfies the following properties:
(1) there are v points,
(2) there are b blocks
(3) each point is in exactly r blocks
(4) each block contains exactly k points,
(5) each pair of distinct points is in exactly A blocks.

We call these designs “balanced” in the sense that each pair of points occurs the same
number of times, and “incomplete” because k < v, so the blocks cannot contain the entire
set of points. Additionally, property (3) and property (5) are equivalent to the design being
a 1-design and a 2-design, respectively. Properties (1) and (2) are made true by definition,
and we will show later that we can uniquely determine k from the rest of the information,
so an alternative definition for a BIBD is a design that is both a 1-design and a 2-design.

To illustrate the idea of a BIBD, we will consider a well-known example.

Date: December 2025.



Figure 1. The Fano plane

Example. Suppose we have a tournament of 7 teams, and we want each team to play against
each other. However, the game we are playing requires three teams to play at a time, after
which a ranking of the three teams is determined. Due to this, we cannot use a typical round-
robin style tournament, so we want to know if it is possible to arrange such a tournament
without requiring a team to play another team on more than one occasion.

We can represent this scenario with a BIBD, where the points represent teams and the
blocks represent matches. In particular, for this BIBD we have v = 7 because there are 7
teams, k = 3 because there are 3 teams in each match, and A = 1 because each pair of teams
plays each other exactly once. If a BIBD with these conditions exists, then the tournament
scenario would be possible.

It turns out that this is possible, and if we label the teams from 0 to 6, then a possible
construction for the blocks is as follows:

{0,1,3},{1,2,4},{2,3,5},{3,4,6},{4,5,0},{5,6,1},{6,0, 2}

This design has b = 7 blocks, and each point appears in exactly » = 3 blocks, so it is a BIBD.

This BIBD is known as the Fano plane, and it is the simplest nontrivial example of a
BIBD. It is often represented as the diagram in Figure [II In this diagram, the 7 vertices
represent the points, and the 7 lines represent the blocks. Since it is a BIBD, it has the
properties that there is a fixed number of lines on each vertex, and there is a fixed number
of vertices on each line. Furthermore, each pair of lines intersects at exactly one vertex.

We can use combinatorial double-counting arguments to relate the parameters of a BIBD,
which gives us some necessary conditions for the existence of a BIBD for certain parameters.

Proposition 1.4. For any BIBD, the following equations hold:

(1.1) vr = bk
(1.2) r(k—1) = Av—1).
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Proof. To prove equation (1.1), we will count in two ways the number of ways to choose a
block and a point in the block, that is, the cardinality of the set

{(B,z): B € B,z € B}.

The cardinality of this set can be counted either by iterating over the points or the blocks
of the design. There are v points, and each point is contained in r blocks, so the number of
such pairs is vr. Alternatively, there are b blocks, and each block contains &k points, so there
are bk elements, meaning that vr = bk.

Next, for equation (1.2) we will fix a point a and count the number of ways to choose a
block containing a, then choose a point in the block other than a. The corresponding set is

{(B,z): B€ B,a€ B,z € B,x # a}.

Firstly, there are r blocks in B containing a, and for each such block there are k — 1 choices
for = that are not equal to a, so the cardinality of the set is r(k — 1). On the other hand,
there are v — 1 choices for x since = # a, and for each x there are A\ blocks in B containing
both a and x, so the cardinality of the set is A(v — 1). Therefore, r(k —1) = A(v—1). R

Using these two equations, we can derive all five parameters from just knowing the values
of three of them. Due to this, we often just specify a design as a (v, k, A)-design, and we call
these three parameters the primary parameters, while b and r are the secondary parameters.

Then, using the equations we just found, it is easy to see that r = % and b= 4 = ’\5:22_7]:).

2. FISHER’S INEQUALITY

It is often helpful to represent a design in the form of a matrix, so that we can use linear
algebra tools to perform operations on the entries. Using this method, we will eventually
prove Fisher’s inequality, which is considered the most fundamental theorem for BIBDs.

Definition 2.1. For a (v, k, \)-design (V, B) with points V; through V,, and blocks B; through
By, we define its incidence matriz as follows: the v x b matrix A such that A, ; = 1if V; € B;,
and A; ; = 0 otherwise.

Ezxample. The incidence matrix for the Fano plane is

1 1 1 0 0 0 07
1001100
1 0000O0T171
A=101 01 010
0100101
0011001

0 01 011 0]

This matrix is quite useful because it clearly encodes a lot of the important information
about the design. In particular, if A is the incidence matrix of a (v,b,r, k, \) design, then
each row has exactly r ones since each point is in r blocks, each column has exactly k ones
since each block contains k points, and the dot product of any two distinct rows is A since
each pair of points is found in exactly A blocks. To utilize this property, it is useful to
consider the v x v matrix formed by multiplying A by its transpose: AAT.

Lemma 2.2. The matriz AAT has all diagonal entries equal to v, and the rest of the entries
are equal to .
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Proof. The (i, j) entry of this matrix is the dot product of the ith and jth rows of A. On
the diagonal, i = j, so the entry in AA” is the dot product of the ith row with itself. This
counts the number of ones in the row, which is r since each point is in r blocks. For all
other entries, we showed earlier that the dot product of any two distinct rows is A, so the
remaining entries of AAT are all filled with \. |

We are interested in the rank of the matrix AA”, since this will give us our desired bound.
To find this, we will use the fact that the rank of a matrix is preserved when we perform
elementary row and column operations. If we can reduce AA” to a upper-triangular matrix
with no zero rows, then we will know that the rows are all linearly independent, so the rank
is v.

Lemma 2.3. The rank of AAT is equal to v.

Proof. From [2.2] we begin with the following v x v matrix:

roA A A
A oA A
AAT — A AT A
A A A T
By subtracting the first row from each of the others, we get
[ A A A
A—r r—Xx 0 0
A—r 0 r—A 0
(A= 0 0 r—A]

Next, we can cancel out the remaining nonzero entries in the first column by adding to the

first row each of the other columns:

[r+(v—1DXx A A A
0 r—A 0 0
0 0 r—A 0

I 0 0 0 r—Al

Since this matrix is upper-triangular and all the diagonal entries are nonzero, the rank of
the matrix is v, so the original matrix also has rank(AAT) = v. |

Now that we have found the exact value of rank(AAT), we can use another property from
linear algebra to put a bound on rank(AA”). This will prove our theorem.

Theorem 2.4 (Fisher’s Inequality). For any balanced incomplete block design, the number
of blocks is at least the number of points, that is,

b>w.

Proof. We have shown in that rank(AAT) is equal to v. Additionally, we know from
linear algebra that the rank of a product of two matrices is at most the rank of each of the
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matrices. Matrices A and AT have v and b columns, respectively. Thus, rank(AAT) = v
cannot exceed b, so we have shown that

b>wv
for all BIBDs. [ |

3. FINITE PROJECTIVE PLANES

The Fano plane from earlier is a special example of a BIBD because it satisfies the property
that v = b, the number of points is equal to the number of blocks. This is the equality case
of Fisher’s inequality that we proved in the previous section. We give BIBDs of this form a
special name.

Definition 3.1. A BIBD is a symmetric balanced incomplete block design (SBIBD) if it
satisfies the condition that v = b.

Using our first equation from [1.4] we get as a corollary of this condition that r = k, so
the number of blocks in which each point appears is equal to the number of points in each
block.

We can generalize the idea of the Fano plane into designs with more points and blocks.
The Fano plane is part of a special class of SBIBDs called finite projective planes, which are
typically defined as follows.

Definition 3.2. A finite projective plane of order n is defined as a set of points and lines
that satisfy the following properties:

(1) Each line goes through exactly n + 1.

(2) Each point lies on exactly n + 1 lines.

(3) For each pair of distinct points, there is exactly 1 line that goes through both of
them.

(4) Each pair of distinct lines intersects at exactly 1 point.

As we did for the Fano plane, we can easily translate this into a BIBD by considering the
lines as blocks, and we get that r =n+ 1, k =n+ 1, and A = 1. Then, using the equations

in [[.4] we get

rk—1)=ANv—-1) = v=1+ =n*+n+1,

(n+1)n
1

then

(n*+n+1)(n+1)
(n+1)

Therefore, if a finite projective plane of order n exists, it is equivalent to a (n®?+n+1,n+1,1)-

design. It turns out that such a design exists whenever n is a prime power, but constructing

this design is outside the scope of this paper. It is an open problem as to whether a finite

projective plane of order n exists for some n that is not a prime power.

vr = bk =— b= =n?4+n+1.
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