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Abstract

Linear programming is the problem of optimizing a linear objective
function subject to a collection of linear constraints. Although the prob-
lem appears simple in form, it captures an astonishing range of mathe-
matical structures, from geometry to optimization to computational com-
plexity. This paper introduces the theory of linear programming, explains
the geometry of feasible regions, describes the simplex and interior-point
algorithms, and outlines why the problem is solvable in polynomial time.
We conclude with examples illustrating the power and scope of linear
programming in modern mathematics and computer science.

Contents

1 Introduction 2

2 Historical Development 2

3 Mathematical Foundations 3
3.1 The Standard Form . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Fundamental Theorems of Linear Inequalities . . . . . . . . . . . 3

4 Geometric Structure of Linear Programs 3
4.1 Feasible Regions and Polyhedra . . . . . . . . . . . . . . . . . . . 3
4.2 Geometry of Vertices, Edges, and Faces . . . . . . . . . . . . . . 4

5 Duality Theory 4

6 Algorithms for Linear Programming 5
6.1 The Simplex Method . . . . . . . . . . . . . . . . . . . . . . . . . 5
6.2 Interior-Point Methods and Polynomial-Time Solvability . . . . . 5
6.3 Interior-Point Methods: Technical Overview . . . . . . . . . . . . 5

7 Complexity and Computational Aspects 6
7.1 LP in Computational Complexity . . . . . . . . . . . . . . . . . . 6
7.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1



8 Applications 6
8.1 Classical Applications . . . . . . . . . . . . . . . . . . . . . . . . 6
8.2 Advanced Applications . . . . . . . . . . . . . . . . . . . . . . . . 7

9 Future Directions 7

10 Conclusion 7

11 Acknowledgements 8

1 Introduction

Linear programming (LP) asks us to maximize or minimize a linear function
of several real variables, subject to linear inequalities. Formally, one seeks to
optimize

cTx

over all vectors x ∈ Rn satisfying constraints of the form

Ax ≤ b.

Despite this seemingly elementary structure, linear programming forms the
backbone of optimization theory, operations research, and even complexity the-
ory. It generalizes classical problems such as resource allocation, flow networks,
scheduling, transportation logistics, and more.

The central surprise is that linear programming is efficiently solvable: interior-
point algorithms run in polynomial time, establishing that LP belongs to the
complexity class P. At the same time, the simplex method—while exponential
in the worst case—performs remarkably well in practice.

2 Historical Development

The origins of linear programming trace back to the early 20th century, particu-
larly to the work of Leonid Kantorovich, who first formulated optimization prob-
lems using linear inequalities in the context of resource allocation. His work,
performed during World War II, remained relatively obscure until the 1940s,
when George Dantzig independently developed the simplex method to solve
military planning problems [5]. Dantzig’s framework unified various optimiza-
tion problems into a single mathematical structure that could be approached
algorithmically.

The term “programming” in “linear programming” originates from military
and economic “planning” terminology, not computer programming. As digital
computers emerged, LP became one of the first major applications of compu-
tational mathematics. By the 1970s and 1980s, foundational results concerning
duality, degeneracy, and convexity had firmly placed linear programming at the
center of optimization theory [4].

2



3 Mathematical Foundations

3.1 The Standard Form

Any linear program can be converted into the so-called standard form, which
seeks to

maximize cTx

subject to
Ax = b, x ≥ 0.

Introducing slack variables converts inequalities to equalities, while splitting
variables into positive and negative parts allows removal of sign restrictions.
The standard form is convenient for algorithmic analysis, especially for the
simplex method [2].

3.2 Fundamental Theorems of Linear Inequalities

The theory underlying LP relies on a classical result known as the Farkas
Lemma [6], which states that exactly one of the following holds for a given
matrix A and vector b:

1. There exists x such that Ax = b and x ≥ 0.

2. There exists y such that AT y ≥ 0 and bT y < 0.

This lemma underpins duality theory and forms the basis of numerous infeasi-
bility certificates. It also appears in convex analysis, particularly in separation
theorems [11].

4 Geometric Structure of Linear Programs

4.1 Feasible Regions and Polyhedra

The feasible set of a linear program is a polyhedron, the intersection of finitely
many half-spaces [19]. This structure yields several geometric consequences:

• The feasible region is convex.

• If an optimal solution exists, then at least one optimal solution occurs at
a vertex (also called a basic feasible solution).

• Every LP can be visualized as searching for the best point on this poly-
hedron according to the direction of c.

A polyhedron may be bounded (a polytope) or unbounded. Optimal solutions
need not always exist; for instance, the objective may be unbounded above.
Understanding the geometry is thus crucial to understanding the algorithmic
behavior of LP.
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4.2 Geometry of Vertices, Edges, and Faces

Every bounded feasible region of a linear program is a polytope, a higher-
dimensional generalization of a polygon or polyhedron. The structure of a
polytope is described using:

• Vertices: Points where several constraints intersect.

• Edges: Line segments joining adjacent vertices.

• Faces: Higher-dimensional analogues of edges (e.g., 2D faces, 3D facets,
etc.).

Understanding this geometry is essential for both theoretical and algorithmic
analyses. For example, the simplex method walks along edges, meaning its be-
havior depends directly on the adjacency structure of the polytope. In contrast,
interior-point methods ignore the boundary structure and instead exploit the
convexity of the interior [17].

One of the remarkable facts is that although the polytope may have an
exponential number of vertices in the worst case, many practical LPs result in
polytopes with surprisingly structured faces that allow efficient traversal.

5 Duality Theory

Every linear program has an associated dual program [5]. For a primal problem

max{ cTx : Ax ≤ b},

the dual is
min{ bT y : AT y = c, y ≥ 0}.

Duality reveals deep structural symmetry:

• The Weak Duality Theorem guarantees that the primal objective never
exceeds the dual objective.

• The Strong Duality Theorem states that if either program has an optimal
solution, then both do, and their optimal values coincide [13].

• Complementary slackness gives necessary and sufficient conditions for op-
timality.

Duality lies at the heart of optimization theory and has powerful implications
in game theory, economics, combinatorics, and machine learning [3].
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6 Algorithms for Linear Programming

6.1 The Simplex Method

The simplex method, developed by George Dantzig in 1947 [5], moves along the
edges of the polyhedron from one vertex to another, improving the objective
function at each step. Its properties include:

• It maintains feasibility throughout.

• It terminates after finitely many steps if no degeneracy-induced cycling
occurs.

• In practice, it is extraordinarily fast, often running in nearly linear time.

Despite its practical speed, the simplex method has worst-case exponential
complexity, as shown by the Klee–Minty cube example [9]. This led to the
question: Is linear programming actually a polynomial-time problem?

6.2 Interior-Point Methods and Polynomial-Time Solv-
ability

The breakthrough came with Karmarkar’s algorithm (1984) [7], which intro-
duced interior-point methods. These algorithms:

• start inside the feasible region rather than on its boundary,

• follow smooth trajectories toward the optimal point,

• and crucially run in polynomial time.

In general, modern interior-point methods solve LP in time polynomial in
the input size. This places linear programming firmly within the complexity
class P. In contrast to the simplex method, interior-point algorithms depend
heavily on convex geometry, barrier functions, and Newton-type iterations [10].

6.3 Interior-Point Methods: Technical Overview

Interior-point methods follow a smooth trajectory—often called the central
path—toward optimality [17]. Using barrier functions such as the logarithmic
barrier,

ϕ(x) = −
m∑
i=1

log(bi − aTi x),

these algorithms convert the constrained problem into a sequence of uncon-
strained problems. Each step uses Newton’s method to iteratively refine the
solution. The resulting iteration complexity is polynomial, with typical bounds
like O(

√
n log(1/ϵ)).

The efficiency of interior-point methods revolutionized optimization and
challenged decades of folklore about the dominance of the simplex method.
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7 Complexity and Computational Aspects

7.1 LP in Computational Complexity

The fact that LP lies in P has profound implications [8]. For example:

• LP serves as an intermediate tool in many polynomial-time approximation
schemes.

• Certain NP-hard problems can be relaxed to LPs that yield lower bounds
or fractional approximations [15].

• Deterministic polynomial-time solvability of LP contrasts with integer pro-
gramming, which is NP-complete.

Even more interestingly, the class P vs. NP question interacts with LP via
extended formulations: some polytopes require exponentially many constraints
to represent, placing inherent limits on LP-based approaches [18].

7.2 Sensitivity Analysis

After solving a linear program, one often wants to understand how stable the
solution is. This leads to sensitivity analysis [2], which investigates how small
changes in the data affect the optimal solution. Key insights include:

• If the optimal basis remains unchanged, the optimal solution varies linearly
with changes in b or c.

• Dual variables provide “shadow prices,” indicating the marginal value of
relaxing constraints.

• Degeneracy can cause abrupt changes even under small perturbations.

Sensitivity analysis is crucial in economics, operations research, and parametric
optimization.

8 Applications

8.1 Classical Applications

Linear programming is ubiquitous across scientific and industrial fields [5]. Ex-
amples include:

• Network flows: maximum flow, minimum cut, bipartite matching [1].

• Resource allocation: optimal production schedules and cost minimiza-
tion.

• Machine learning: support vector machines often reduce to quadratic
or linear programs [14].
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• Geometry: computing convex hulls and solving large-scale feasibility
problems.

Many discrete optimization problems can be relaxed to linear programs, pro-
viding bounds and approximation guarantees [16].

8.2 Advanced Applications

Modern use cases of LP include:

• Supply chain optimization: Minimizing cost in large-scale global net-
works.

• Energy grids: Balancing generation, storage, and consumption con-
straints.

• Computer graphics: Solving visibility and illumination problems via
linear constraints.

• Data science: Feature selection, clustering relaxations, and fairness con-
straints.

LP’s adaptability continues to grow as new scientific fields adopt optimization-
based modeling.

9 Future Directions

Research in linear programming investigates [12]:

• Faster algorithms with improved dependence on dimension.

• Smoothed analysis of simplex and interior-point performance.

• Hybrid methods combining simplex and interior-point ideas.

• Applications to large-scale, real-time optimization.

These directions ensure that LP remains a vibrant and indispensable branch of
applied mathematics.

10 Conclusion

Linear programming is a cornerstone of modern mathematics and computer sci-
ence. What begins as the simple task of optimizing a linear function subject to
linear constraints reveals a rich interplay among geometry, algebra, and com-
putational complexity. With polynomial-time solvability and vast real-world
applicability, LP remains one of the most important and elegant problems in
optimization theory [3, 13].
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