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ABSTRACT. This expository paper surveys Catalan numbers from both algebraic and com-
binatorial perspectives. After presenting their explicit formula and main recurrences, we
examine several combinatorial problems whose solutions are counted by Catalan numbers.
In each case, we either construct a bijection with a standard Catalan object or verify that
the problem satisfies the Catalan recurrence relation and initial conditions. We then turn
to the generating function for the Catalan sequence and use it to study the growth rate of
these numbers. We present each use both algebraically and combinatorially. We end with
the generating function of Catalan Numbers, and how they can be used to quickly derive
that of other sequences.

1. INTRODUCTION

The Catalan numbers are from the integer sequence

1 2
C, = <n>,n20,
n+1l\n

whose first few values are 1, 1, 2, 5, 14, 42, 132, .... At first, they look like some family of
binomial coefficients, but they turn out to count a variety of combinatorical structures. A
Catalan object is any family of objects F,, indexed by n > 0 such that

|-7: n’ =Cy

for all n, where n is some parameter (number of steps, number of vertices, number of pairs
of parentheses, and so on).

1.1. Early European appearances, Euler and Segner. One of the earliest known ap-
pearances of the Catalan Sequence in Europe is in the work of Leohnard Euler. Consider
a convex polygon with n + 2 vertices. A triangulation of this polygon is designed as the
maximal set of noncrossing diagonals that partitions the polygons into triangles. Let T,
denote the number of triangulations of a convex polygon with n + 2 vertices. For small n we
can compute directly:
To=1T,=1,T,=2T;=5T, = 14.

These are already the first few Catalan numbers. Euler studied this problem in the 1750s
and found a closed product formula for what we now write as

o - 1 <2n>
n+1\n

At that time, the connection between the formula and polygon triangulations was still being
studied. The main method that eventually organized everything was a recurrence relation
due to Johann Andreas von Segner.
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Segner observed that any triangulation of a convex (n + 2)-gon can be decomposed by
looking at the unique triangle that contains a fixed base edge. Suppose we label the vertices
of the polygon 0,1,...,n+ 1 around the boundary and focus on the base edge (0,n+1). In
any triangulation there is a unique vertex k with 1 < k < n such that (0, %) and (k,n + 1)
are both diagonals. These two diagonals split the polygon into two smaller convex polygons
with vertices

0,1,...,k and k,...,n+ 1.

Every triangulation is obtained by choosing a triangulation of each smaller polygon. If we
let T;, denote the number of triangulations of an (n+2)-gon, then this decomposition implies
the recurrence

n—1
Ty=1, T,=>» T;Th,1 forn>1
=0

We will see this recurrence again in later sections, it is the standard Catalan recurrence.
In modern notation, we simply write T,, = C,.

The recurrence was published by Segner in 1758. Euler had already identified the same
numbers through analytical methods. Later, Lamé gave the first proof that the recurrence

and the closed form L(2:) match. But, Euler’s and Senger’s work shows that Catalan

n+1
numbers encode recursive triangulations long before the numbers were named or recognized

as a sequence.

1.2. Mingantu and divisions of a circle. The history of Catalan numbers extends beyond
Europe. Around the same period, the Mongolian mathematician Mingantu, worked at the
Qing court in China. He studied problems about dividing a circle and expressing cord lengths
in terms of arcs.

Fix a circle of radius 1 and consider an arc that is divided into n equal sub-arcs. Let
x be the chord length corresponding to a small sub-arc and let g, be the chord length
corresponding to the whole arc with n segments. For a given n, Mingantu built models,
geometric ones, that relate y, to x. He then converted those relationships into algebraic
expressions.

For example, when n = 2 he obtained an expression of the form

y2 = 2x — (higher order terms in z),

and for n = 4 he derived an infinite series

10 14 12
e —
Ya 1 + I 5 +
Interestingly, we can rewrite these series using trigonometric functions. If we interpret
x = sin(«) and y,, = sin(na), Mingantu’s calculations lead to expansions of the form

sin(2a) = 2sina — 5 an, sin? o
n>1

and similar formulas for sin(4a) and higher multiples. The coefficients a,, in these expansions
can be expressed in terms of Catalan numbers. In particular, you can get an identity of the

shape
s 2n+1
sin(2a) = 2sina — Z Cy, S

4n—1 )
n>1
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where C,, = #1 (2:) The coefficients, which we now understand as Catalan numbers, already

were present in Mingantu’s work on trigonometric series and circle divisions.

It is important to note that this perspective was made clear much later, where math
historians reinterpreted Mingantu’s constructions using modern notation. Today, his work
is cited as a discovery of the Catalan sequence, obtained by analyzing power series rather
than counting combinatorial objects.

1.3. Eugene Catalan and parenthesizations. The actual sequence as we know it today
is named after Eugene Charles Catalan (1814 — 1894), a Belgian mathematician who worked
in France and Belgium in the nineteenth century. In a paper written in 1838, Catalan studied
the following problem: given a product of n + 1 factors

Lol1T2 " * Ty,

in how many ways can one insert parentheses so that the product is well-defined if multipli-
cation is associative but not commutative? Each paranthesized expression corresponds to a
binary tree structure on the n + 1 factors. For example, when n + 1 = 4 the five possible
scenarios are

(((wox1)z2)w3), ((wo(172))73), ((T0w1)(T273)), (T0((T172)23)), (Wo(w1(T273))).

Catalan derived the formula

. 1 2n
#{parenthesizations on n + 1 factors} = m—r ( i )

He wrote the expression in factored form and analyzed it in terms of non associative products.
In other words, he showed that C,, counts the number of ways to fully parenthesize a product
of n + 1 letters. This interpretation is the most standard combinatorical models of Catalan
numbers, and is an example of a Catalan object.

The same sequence therefore appears in two very different settings by the mid-nineteenth
century. At this stage, however, the numbers were not treated as a unified object yet, but
they were made gradually over the following decades.

1.4. Generalizations and a modern view. One early extension is now called the Fuss—
Catalan family. Fix an integer m > 1 and look at a convex polygon with mn + 2 vertices.
Instead of triangulating it, one can ask for the number of ways to cut it into (m + 2)-gons
using noncrossing diagonals. The answer is

F(m)_; min
" (m—=1n+1\n )’

and for m = 2 this reduces to the usual Catalan number C),. So, all of the classical poly-
gon triangulations and parenthesization are m = 2 case of a broader pattern where binary
structure is replaced by (m + 2)-ary structure.

2. DEFINITIONS AND NOTATION

Definition 2.1. Let n > 3. A convex n-gon is a polygon in the plane with n vertices in
convex position, labeled cyclically vy, vg, ..., v,.
A diagonal of the n-gon is a segment joining two non-adjacent vertices.



A triangulation of a convex n-gon is a maximal collection of pairwise noncrossing diagonals.
Equivalently, a triangulation is a decomposition of the polygon into triangles whose vertices
are the original vertices.

Definition 2.2. The multinomial coefficient (kln kd) is the number of ways to color k;
elements for 1 <7 < d with the color ¢; where there are d colors called ¢y, ..., cq. Obviously,
we have the condition on the size of the set being k1 + - -+ + kg = n.

For calculation purposes, we have the following proposition.

n B n!
ki ... kq) kil kgl

This is the number of ways to color the numbers from 1 to n ¢y colors. We can color k; of
the numbers ¢;, then ks of the numbers ¢y, and so on. This results in the RHS.

Proposition 2.3.

3. DYCK PATHS, BALLOT SEQUENCES, AND THE OPEN PARENTHESES PROBLEM

With our built up knowledge, we introduce lattice paths from (0,0) to (n,n).
Definition 3.1. A lattice path from (0,0) to (n,n) is a path with steps going north or east.

We have a way to calculate the number of such paths. We make a bijection from the
number of paths in a lattice to the number of ways to arrange RR ---UU where there are n
Rs and n Us. An R corresponds to an east step and a U corresponds to a north step. Notice

(2n)!

that the number of ways to calculate this is 55

We can work with multinomial coefficients in lattice paths too.

Proposition 3.2. The number of paths from (0,0,...,0) to (nq,...,nx) taking steps of the
form (0,...,0,1,0,...,0) -i.e. moving parallel to one of the coordinate azes in the positive

direction - is equal to the multinomial coefficient (”;TZ’Z’“)

Catalan Numbers appear in Dyck paths in the following theorem.

Theorem 3.3. The number of paths from (0,0) to (n,n) taking steps to the north or east
and never going above the line y = x is equal to #(2:)

Proof. There are many proofs of this theorem with similar approaches. Consider a path from
(0,0) to (n,n) using north and east steps. Essentially, it either never crosses y = = or it
does at some point (k, k) to (k,k + 1). Analyzing this path, it is made up of k east steps
and k + 1 north steps and n — k east steps and n — k — 1 north steps. We now reflect the
part of the path after (k, k + 1). The modification is that after (k,k + 1), we convert every
north step to an east step and every east step to a north step. An example is shown below.

This results in a total of k+ (n —k —1) = n—1 east steps and k+1+n—k = n+ 1 north
steps, therefore the path ends at (n — 1,n + 1). These "bad” paths sum to (anl) possible

ways. By complementary counting, there are (2:) — (ffl) good paths. [



It is also possible to generalize to an (m,n) rational Catalan number. This is defined as
the number of paths from (0,0) to (m,n) not going above the line from (0,0) to (m,n). A
similar argument verifies that C,,,, = min (m:")

We now present one proof of the recursion for the Catalan Numbers through Dyck paths.

Theorem 3.4. For each n > 0, we have
Chi1 = CoCp + C1Cpqy + CC, o + -+ + C, 1 C1 + C,Cp = Z CrChi
k=0

Proof. Consider a Dyck path from (0,0) to (n + 1,n + 1), and specifically the first time
when it hits the line y = z (disregarding (0,0)). Without loss of generalization, suppose
it hits at (k4 1,k + 1) for a k € [0,n]. Look at the subpath of the Dyck path from (0, 0)
to (k+ 1,k + 1). This path begins with an east step and finishes with a north step. This
subpath containes a path from (1,0) to (k+ 1,k).

As we assumed that (kK + 1,k + 1) was the first time that the path touched y = x, the
path from (1,0) to (k + 1,k) stays below y = x. Essentially, this is a path from (1,0) to
(k + 1, k) never crossing y =  — 1. But, this is a Dyck path of length k, and there are C
such subpaths.

After (k+1,k+ 1), we have a path from (k+1,k+1) to n+1,n+ 1 never crossing y = z.
This is a shifted version of a path from (0,0) to (n — k,n — k) not crossing y = x, so there
are C,,_j of those. Therefore, there are Cy.C,,_; Dyck paths from (0,0) to (n+1,n+1). We
sum from k£ = 0 to n, which gives us the desired result. [ |

We now dive into the problem of paranthesizations of an expression with symbols, which
has a bijection with Dyck paths. Consider the number of ways to paranthesize the product
abed for n = 3 (we typically consider paranthesizations of n+ 1 symbols). For example, here

are some possibilities:
(((ab)c)d), (a(blcd))), (((ab)c)d)

Theorem 3.5. There are C,, ways of performing parenthesizations on n+ 1 symbols so that
the expressions are parenthesized in pairs.

Proof. We aim to make a bijection with Dyck paths from (0,0) to (n,n). Let us begin with
a parenthesized product and delete all the right parentheses and the rightmost variable. For
n = 3, this means deleting d. Examples are (((abc and ((ab(c. Notice that all of these
modifications are distinct and we can get the fully parenthesized expression by placing the
last variable at the end, and left from right, inserting a parenthesis when we have two
consecutive symbols or groups of symbols.



We can now get a bijection with Dyck paths. From a Dyck path, replace every east step
with a left parenthesis and every north step with a symbol. Then perform the modification
to reinsert the right parentheses and the final variable. This results in an invertible process.
We start with a parenthesized expression and retain a Dyck path, so this is a bijection. H

We can further emphasize how this modification works with a slightly larger example.
Consider the string (((a(be((de(fg. We insert h in at the end (we are forced to) to get
(((a(be((de( fgh. Working from the left, we close off be like (((a(be)((de(fgh. Since (be) is
a group and we have a outside, we parenthesize as follows (((a(bc))((de(fgh. Furthermore,
the next pair if (de), which we cap off as (((a(bc))((de)(fgh. The last consecutive symbols
are fg, so (((a(bc))((de)(fg)h. Since we have the adjacent blocks (a(bc)) and ((de)(fg)), we
group them (((a(bc))((de)(fg)))h. The h is grouped with everything else, so we end with
(((a(be))((de)(fg)))h). It can be verified that going backward and deleting h and the right
parentheses we have (((a(be((de(fg.

Dyck paths are very useful in making bijections to other sets that involve the Catalan
Numbers. Consider the following set: sequences of length 2n consisting of n a’s and n b’s,
such that for each 1 < k < 2n, the number of a’s among the first k letters is at least as large
as the number of ’s among the first k letters.

For example for n = 2, abab works, but abba doesn’t.

Theorem 3.6. The cardinality of this set is C,,.

Proof. We make a bijection between these elements to Dyck paths. We biject each a to an
east step and each b to a north step. Therefore, this is just the number of Dyck paths from
(0,0) to (n,n) where an a corresponds to (1,0) and a b corresponds to (0, 1).

We can verify that this is a bijection through the same proof of why there are C,, Dyck
paths from (0,0) to (n,n) with the same "reflection” idea. It is also sufficient to note that
the condition "the number of a’s among the first k letters is at least as large as the number
of b’s among the first £ letters” means that there are at least as many east steps as north
steps. But, this is equivalent to saying that we never cross y = x. [

This is closely related to the Ballot Problem. Joseph Bertrand proposed the following
problem in 1887.

Suppose that in an election, candidate A receives a votes and candidate B receives b votes
where a > b. Compute the number of ways the ballots can be ordered so that A maintains
at least as many votes as B throughout the counting of the ballots.

Bertrand showed the number of ways is 4=2 (“H’). We now consider a more general problem

at+b\ a
where a > kb for a positive integer k. Note the remaining details still apply.

Theorem 3.7. The number of ways to do so for the modified Ballot Problem is aajr]zb (azb).
Proof. We can represent a ballot permutation as a lattice path from (0, 0) where the votes for
A are upsteps (1,1) and votes for B are downsteps (1, —k). We wish to find the number of
paths with a upsteps and b downsteps where no step ends on or below the z-axis. Paths that
are above the z-axis are good. Paths that end on or below the z-axis are bad. A downstep
that starts above the z-axis and ends on or below it is called a bad step.

For i € [0, k] let S; denote the set of all bad paths whose first bad step ends ¢ units below
the z-axis. Obviously, these k+ 1 sets are disjoint and their union is the set of all bad paths.
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Note that the paths in S}, are those paths that start with a downstep. Therefore | S| =
(“+Z_1) as we choose a upsteps from a total of a + b — 1 steps since the first step is forced to
be a downstep.

We claim that |S;| = |Sy| for i # k.

Consider a path in S; and specifically the first step of that path that ends ¢ units below
the x-axis. Let X be the initial segment of that path that ends with that step and call that
path XY. Let X’ denote the path that results from rotating X by 180 degrees, which swaps
its endpoints. Since X ends with a downstep, X’ starts with a downstep, and X'Y € By,.

This same process converts a path in By, into a path in B; for ¢ # k. If the original path
is in By, then take the first step that ends ¢ units below the z-axis. Let X be the initial
part of that path that ends with that step and call said path XY. Since X has to end with
an upstep, we have X'Y € B,.

Consequently, each of the k + 1 sets B; have cardinality (
paths is (by complementary counting):

<al—b> —(k+1)<a+2_1) :aa;lgbb<azb>

4. Q-ANALOGUES AND CATALAN POLYNOMIALS

a+b—1
a

), and the number of good

This section aims at understanding how Catalan Numbers are related to g-analogues.
The field of g-analogues has many definitions, and we will choose only the ones pertinent to
describing the Catalan Numbers.

A g-analogue of a counting function is defined as a polynomial in ¢ that reduces to the
function when ¢ = 1. Beyond that value, it satisfies other algebraic properties such as
recursions.

Definition 4.1. The g-analogue of the real number n, denoted as [n] is
1—q"
=~
—q

It can be verified by L’Hopital’s rule that [n] — n as ¢ — 17. We can describe n! as a
g-analogue in the following way

ot = [T = (1 0+ ) (L g oo™

We now define several terms to understand g-analogues.

Definition 4.2. A statistic on a set S is a combinatorial rule that maps an element of N to
each element of S. A permutation statistic is a statistic on the symmetric group .5,,. Clearly
|Sn| = nl.

Definition 4.3. We define a word o10909 - - - 0, as a linear list of elements of a multiset of
nonnegative integers.

Definition 4.4. We define an inversion of a word ¢ as a pair (i,j) for 1 <i < j < n such
that o; > o;.
We define a descent as an integer ¢ for i € [1,n — 1] such that o; > 0;41.



For example, consider the permutation 261543. The pair (1,3) is an inversion as 2 > 1.
Additionally, ¢ = 2 is a descent as 6 > 1. We can then define the inversion statistic and
major index statistic.

Definition 4.5. The inversion statistic Inv(o) is the number of inversions of o:

Inv(o) = Z 1

1<J,0;>0;

The major index statistic Maj(o) is the sum of the descents of o:

Maj(o) = Z i

1,0 >0 41

Definition 4.6. A permutation statistic is said to be Mahonian if its distribution over S,
is [n]l.

It turns out that both Inv and Maj are Mahonian.

Theorem 4.7. )
Z qInV(U) _ Z qMaJ(U) — [n]'

O'ESn O'ESn

Proof. We give a proof for the case of the inversion statistic. The major index statistic has
a similar idea, but it is outside the scope of the paper.

Consider a permutation A € S, _;, and define the operation A(k) for the permutation in
Sy, to insert n between the (k — 1)th element and the kth element of A. For instance, if
A = 1342, then A(2) = 15342. This operation allows us to relate the inversion of A(k).
Notice that when n is inserted, it is clearly larger than the rest of the n — k elements, so
there are n — k new pairs added.

Therefore, Inv(A(k)) = Inv(A) +n — k. Therefore, we can write that:

Z qInV(O') — Z (1 + q+q2 RS qn—l)qInV(A)

UESn AESn,1

By induction, we can show that Inv is Mahonian. [ |

At this point, we might ask how these g-analogues can relate to Catalan Numbers. To do
so, let us introduce some new information.

Definition 4.8. The gaussian polynomial is for n, k € N:

m [n]! (1-g)A—g¢" ' (1—g" ")
k] (k]! — k]! 1-¢")A—q¢")---(1—q)

Let B, ,, denote a lattice board of width n and height m. Given © € B, ,,,, we define o(m)
to be an element in S, ,, from the algorithmn: we initialize toward an empty string. For
every north step, we place a 0 to the end. For every east step, we place a 1 to the end. We
define 7(o) to be the inverse of the following algorithmn.

We let a;(m) be the number of complete squares, in the ith row from the bottom of 7, which
are to the right of  and to the left of the line y = x (this should sound familiar to the typical
definition of the Catalan numbers with Dyck paths). We denote a;(7) to be the length of
the ith row of 7. We then define the area vector of pi to be (a1(m), as(m), asz(w), -, an(m)).
We set Area(m) = >, a;(m).




9

We define B;: . to be the paths characterized by the property that there are at least as
many 0’s as 1’s. We then have the following by MacMahon as a possible characterization of
the g-analogue of C,:

Theorem 4.9.

S e L 12n
n+1] | n

7r€B7J{,n

The proof of this requires techniques beyond the scope of the paper, but it does exist. The
second natural g-analogue of C,, was studied by Carlitz and Riordan who defined it as the
following.

Definition 4.10.

Cn(Q) _ Z qArea(ﬂ')

WEBIJL

Notice that we can also transform the recurrence for Catalan Numbers into g-Catalan
numbers recursion. Recall the the normal recursion is C,, = ZZ:O ChCh—r.
We define the g-Catalan Numbers C,, = C),(q) by

z= Z Cp12"(1—2)(1—qz2)---(1—¢"'2)

n=1

We present a sketch. Notice that
2= Z Cr12"(2)g "k 2 =

k>1
= Z Cra2"(2)eg™" Z Cia(q2)'(¢"2)i =
k>1 i>1
= Z( Z Ckflciflqk(ifl))zn(z)n
n>2 k+i=n

We can therefore rewrite the expression for z as:
z2==Cpz(l—2)+ Z Cr12"(2)n
n>2
By analyzing the coefficients, we find that
Cno1= Z Ckciq(k+1)i
k+i=n—2
We can re-index as following:

Cry1 = Z CrCpgg IR

k=0

Letting C,(q)" = q(g)cn(q_l>3
Coia(q) =) ¢"CiC),
k=0

The first few values are

Co=C1 =1
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02:1+q
Cy=14+q+2¢+q°
Ci=1+q+2¢+3¢+3¢" +3¢ +¢°

5. CATALAN NUMBERS IN SETS AND PATTERN AVOIDANCE

In this section, we will study three families of Catalan objects arising from sets and
permutations:
(1) stack-sortable permutations of S,;
(2) noncrossing partitions of [n] ={1,2,...,n};
(3) permutations avoiding the pattern 123.

We show that each of these families is counted by the Catalan number

c - 1 (2n>
n+1\n

, and then we will analyze the structure in detail.

Let S,, denote the symmetric group on {1,2,...,n} written in a one-line notation. Given
a permutation m = mmsy ... T, € S, and a pattern o € Sy, we say that 7 contains the pattern
o if there exists indices

1<y <ig< - <, <n

such that the subsequence m;, 7, ... m;, is order-isomorphic to o, that is,

k
Tig < T = 04 < 0p

forall 1 <a,b < k. If 7 does not contain o, we say that m avoids o For a set of patterns B,
we write

Av,(B) = {m € S, : m avoids every € B}.
A theorem states that for every pattern o € S3 and every n > 0 one has

| Av,(0)] = C,.

The six patterns of length 3 fall into orbits under symmetries of S,, (reversal, complement,
inverse), and these symmetries imply equalities of avoidance numbers within each orbit. The
fact that all six patterns give Catalan numbers requires additional arguments. In this section
we will provide enumerations (Catalan) for 0 = 231 and o = 123; the other four patterns
then follow by composing with these symmetries.

5.1. Stack-sorting and 231-avoiding permutations.
5.1.1. The stack-sorting procedure. We consider the classical model of a single stack between
an input and an output queue. The input is the permutation

1,2,...,n

in increasing order. The stack initially is empty, and the output is initially empty. The
allowed operations are:

e push: move the first element of the input onto the top of the stack;
e pop: move the top element of the stack to the end of the output.
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Our requirement is that every element must be pushed exactly once and popped exactly
once, and we must never pop from an empty stack.

Given a permutation 7 = mms ... 7T, € S,, we say that 7 is stack-sortable if there exists
some legal sequence of push and pop operations that produces 7 as the output sequence.

It is convenient to encode an execution of the algorithm by a word w over the alphabet
{P,Q}, where P means “push” and () means “pop”. Any legal execution on input 1,2,...,n
has exactly n pushes and n pops, so w has length 2n with n copies of P and n copies of Q,
and the number of ()’s never exceeds the number of P’s in any prefix of w. Thus w can be
interpreted as a Dyck path of semilength n by reading P as an up-step and () as a down-step.

Definition 5.1. Let S,, denote the set of stack-sortable permutations in S,,, and let s,, = |S,|.

Our goal is to show that s, = C,,.

5.1.2. Characterization via pattern avoidance. The key structural result is the following.
[Knuth] A permutation = € S, is stack-sortable if and only if it avoids the pattern 231.
Equivalently,

S, = Av,,(231).

Proof. (Only if.) Suppose 7 contains a 231-pattern. Then there exist indices i < j < k such
that

T < T < T

Consider any legal stack execution that produces 7 on output. When the input element ;
is read, both m; and 7, have not yet been output, so at that moment at least one of them
is in the stack (possibly both). Since the input is 1,2,...,n in increasing order, the relative
positions of 7, 7, m; in the stack force m; to sit above 7;. This makes it impossible to output
m; before m;, contradicting the assumption that the output order is m. A standard local
configuration argument (see any detailed exposition of Knuth’s theorem) turns this into a
formal proof that no permutation containing 231 can be obtained.

(If.) Now suppose 7 avoids 231. We must show there is some legal execution that outputs
7. Consider the greedy algorithm: whenever possible, pop the stack if the top of the stack
is the next desired output element of 7; otherwise, push the next input element. Formally:

o If the stack is nonempty and its top equals the next element we want in 7, pop it to
output.
e Otherwise, push the next input element (if any remain).

One checks that this algorithm never pops from an empty stack and eventually performs
exactly n pushes and n pops.

Assume for contradiction that 7 avoids 231 but the greedy algorithm fails to output .
Then there is a smallest index k£ such that the k-th symbol output by the algorithm does
not equal 7. Immediately before the k-th output step, all elements 7y, ..., m._1 have been
output in the correct order, and the top element x of the stack is not equal to 7. Let y be
the next unread input element, if any.

A careful case analysis of the relative order of x, y, 7, in 7 shows that these three elements
must form a 231-pattern, contradicting the assumption that 7 avoids 231. Hence, if m avoids
231, the greedy algorithm succeeds, and 7 is stack-sortable. [ |
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5.1.3. Enumeration via the position of n. We now count the 231-avoiding permutations. Let
a, = | Av,(231)| = |S,|.

We derive a recurrence for a, by looking at the position of the largest element n in the
permutation.
Let m € Av,(231) and write
T=0nT
where o is the subsequence of elements before n and 7 is the subsequence after n. Let
k=lo|,so0<k<n—1land|r|=n—-1—k.

Lemma 5.2. For any m € Av,(231) written as ont with |o| = k, all elements of o are
smaller than all elements of 7. Moreover, after standardizing the values in o and T to
obtain permutations in Sy and S,_1_, we get permutations in Avg(231) and Av,_1_x(231)
respectively.

Proof. Suppose, for contradiction, that there exist € ¢ and y € 7 with > y. Then the
subsequence x,n,y satisfies

pos(xz) < pos(n) < pos(y) and n >z >y,

so x,n,y are order-isomorphic to 2,3,1. Thus z,n,y form a 231-pattern in 7, contradicting
231-avoidance. Hence every element in o is smaller than every element in 7.

Standardizing the letters means replacing the smallest letter in o by 1, the next smallest
by 2, and so on, to obtain a permutation ¢’ € Si. Similarly, we standardize 7 to 7" € S,,_1_.
If o’ contained a 231-pattern, then the same indices would give a 231-pattern in o (and hence
in 7), which is impossible. Thus ¢’ € Avy(231). The same argument applies to 7’ [ |

Conversely, given any pair of 231-avoiding permutations o € Sy and # € S,,_1_;, we can
construct a unique 231-avoiding permutation w € S,, with |o| = k as follows. Think of « as
a permutation on the set {1,...,k} and 8 as a permutation on the set {1,...,n —1— k}.
Embed them into {1,...,n — 1} by letting o’ act on the smallest k values {1,...,k} and
letting 3" act on the largest n — 1 — k values {k 4+ 1,...,n — 1}. Then all entries of o’ are
smaller than all entries of 5’, and we set

T=anp.

By construction, 7 has |o| = k, and any 231-pattern would have to use n as its largest
element. But for any triple (z,n,y) with x € 0 and y € 7 we have x <y < n, so (x,n,y) is
of type 132, not 231. Inside o and inside 7 there are no 231-patterns by assumption, so
avoids 231.

This construction is inverse to the standardization procedure discussed in the lemma, so
we obtain a bijection between

Avi(231) x Av,,_1 ((231) and {7 € Av,(231):|o| = k}.
It follows that

n—1
a, = Zak Ap_1—k, n>1,
k=0
with initial condition ay = 1 (the empty permutation). This is exactly the Catalan recurrence
n—1
Co=1, C, = CrCr—1-k-
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Theorem 5.3. For alln > 0,
|S,| = | Av,(231)] = C,.

Proof. Both sequences (a,) and (C,,) satisfy the same recurrence and initial condition, and
the Catalan sequence is uniquely determined by these. Therefore a,, = C,, for all n. [ |

Thus, stack-sortable permutations form a Catalan family. The push—pop words of stack-
sorting executions give an explicit bijection between Av, (231) and Dyck paths of semilength
n, but the recurrence already shows why Catalan numbers appear.

5.2. Noncrossing partitions of [n].

5.2.1. Definitions. A set partition of [n] = {1,2,...,n} is a collection of nonempty, pairwise
disjoint subsets (called blocks) whose union is [n]. For example,

= {{17 4, 5}’ {27 3}7 {6}}
is a partition of [6].
We represent a partition by placing the numbers 1,2,...,n in order on a horizontal line
and, for each block, drawing arcs connecting consecutive elements of the block. For the
example above we draw arcs (1,4), (4,5), and (2, 3) over the line.

Definition 5.4. A partition 7 of [n] is noncrossing if in this diagram there are no crossing
arcs, that is, there do not exist a < b < ¢ < d such that a is connected to ¢ and b is connected
to d by arcs in the same partition. Otherwise, 7 is crossing.

Let NC,, denote the set of noncrossing partitions of [n], and let p,, = [NC,,|. We show that
Pn = Ch.

5.2.2. Structure via the block containing 1. Consider a noncrossing partition 7 € NC,,. Let
B be the block containing 1, and write

with & > 1. Since we have drawn arcs between consecutive elements of the block, we have
arcs (bl, bg), (bg, bg), ey (bk—la bk)

Between b; and b;1; (for 1 < j < k) there may be other points of [n] belonging to other
blocks. Define the intervals

Li=1{bj+1,b;+2,....bj,1 — 1}, 1<j<k,

and also
[02{2,3,...,1)1—1}, [k:{bk—l—l,bk—i—Q,,n}
The noncrossing condition implies that each block of 7 (other than B) is entirely contained
in exactly one of the I;’s. In other words, once we know B, the rest of the partition splits
into (k + 1) independent noncrossing partitions, one on each interval ;.
Let |I;| = n; so that
ng+ny+--+n,=n-—=k.

For each 7, the restriction of 7 to I; is a noncrossing partition of a set of size n;, which can be
canonically identified with a noncrossing partition of [n;]. Conversely, given B and a choice of
noncrossing partitions on each I;, we can reconstruct 7. This decomposition is actually quite
standard when considering noncrossing partitions. It shows that NC,, admits a recursive
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description in terms of smaller noncrossing partitions glued around the distinguished block
B. More concretely, if p, = |[NC,| and py = 1, then for n > 1 we obtain the recurrence

k>1 ni+-+npg=n—=~k
n; >0

Here k = | B| is the size of the block containing 1, and n; = |[;| is the size of the j-th interval
between consecutive elements of B (including the final interval after the largest element of
B); these sizes satisfy

n1+~~-—|—nk:n—k.

This decomposition is quite standard when considering noncrossing partitions. It shows
that NC,, admits a recursive description in terms of smaller noncrossing partitions glued
around the distinguished block B. We will later show how to translate this into generating
functions, and yield the Catalan functional equation

P(z) = anx” =1+ 2P(1)?
n>0
which is the same equation satisfied by the Catalan generating function
C(z) = Z Cpa".
n>0

We refer to standard references for the full derivation of this functional equation from the
decomposition above.

Theorem 5.5.

For all n > 0,
pn = INC,| = C,.

Proof. The power series P(z) and C(x) satisfy the same functional equation
F(x) =1+ 2F(x)’

and the same initial condition F'(0) = 1. This equation has a unique formal power series
solution, so P(z) = C(z) and hence p,, = C,, for all n. |

Thus, noncrossing partitions of [n] form another Catalan family. There are explicit bijec-
tions between NC,,, triangulations of an (n 4 2)-gon, plane trees, and Dyck paths.

5.3. 123-avoiding permutations. We now show that the number of 123-avoiding permu-
tations in S, is also C,. This gives a third Catalan family, this time directly in terms of
pattern avoidance.

Let

by = | Av,(123)].
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5.3.1. Recurrence via the position of n. Take m € Av,(123) and write
T=onTt
with |o] =k, |[7] =n — 1 — k. We derive constraints on o and 7.

Lemma 5.6. For any m € Av,(123) written as ont with |o| = k, all elements in o are
greater than all elements in 7. Moreover, after standardizing, o is a 123-avoiding permuta-
tion in S and T is a 123-avoiding permutation in S,_1_x.

Proof. Suppose there exist x € o and y € 7 with x < y. Then the triple z,y,n forms a
123-pattern in 7: we have
pos(z) < pos(n) < pos(y)
and values
r<y<n,

so x, y, n are order-isomorphic to 1, 2, 3 in increasing positions. This contradicts 123-avoidance.
Thus every element of o is greater than every element of 7.

Standardizing o and 7 as before, any 123-pattern in the standardization would correspond
to a 123-pattern in 7, so both standardizations avoid 123. [ |

Conversely, given o € Av,(123) and 8 € Av,,_;_£(123), we can reconstruct a unique 123-
avoiding permutation in S,, with |o| = k by letting the letters of o be the largest k values
less than n, the letters of 8 be the smallest n — 1 — k values, and then inserting them as o, 7
inonrt.

This gives a bijection

Avi(123) x Av,—1 5 (123) «— {7 € Av,,(123) : |o| = k}.
Summing over all k£ we obtain:

Proposition 5.7. The numbers b, = | Av,,(123)| satisfy
n—1

bo=1,  bu= bbp1y forn>1
k=0

This is again the Catalan recurrence. Therefore:

Theorem 5.8. For alln > 0,
| Av,,(123)] = C,.

By the symmetries of permutation patterns of length 3, this implies:
Corollary 5.9. For any o € S3 and any n > 0,
| Av,(0)| = C,.

The Catalan enumeration of 123-avoiding permutations does admit a lot of refinements.
A descent of a permutation 7 € S, is an index ¢ with 1 <7 < n — 1 such that m; > m; ;. Let
d(m) be the number of descents of .

Though we will discuss this greater in-depth later, the Narayana numbers N(n,k) are

defined by
1/n n
= _ <k <n.
N(n, k) n<k)(k—1)’ 1<k<n
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They satisfy

S

N(n,k) = C,.
k=1
It is a nontrivial theorem that N(n, k) counts the number of 123-avoiding permutations in
S, with exactly k£ — 1 descents. In other words,

{m e Av,(123) : d(7w) =k — 1}| = N(n, k).

There are bijections from Av,(123) to Dyck paths of semilength n that carry descents to
peaks, and the same Narayana numbers count Dyck paths with a fixed number of peaks.

6. TRIANGULATION

In this section we show that the number of ways to triangulate a convex polygon is counted
by the Catalan numbers.

Lemma 6.1. Any triangulation of a convex n-gon uses exactly n —3 diagonals and produces
exactly n — 2 triangles.

Proof. Let d be the number of diagonals in a triangulation of an n-gon, and f the number
of resulting triangular faces. Consider the planar graph whose vertices are the n vertices of
the polygon and whose edges are the n sides of the polygon together with the d diagonals.
This graph has

V =n, E=n+d, F=f+1

faces (where the extra face is the exterior). By Euler’s formula for planar graphs,
V—E+F=2 = n—(n+d+(f+1) =2,

which simplifies to

—f+1—-d=2-2n = f=d+1

On the other hand, each triangular face has 3 edges, and each edge lies on at most two faces.
Counting incidences of edges and faces gives

3f =2d+n,

because every diagonal is counted twice (it borders two triangles) and every side of the
polygon is counted once (it borders exactly one triangle). Substituting f = d + 1 into
3f =2d+ n yields

3d+1)=2d+n = 3d+3=2d+n = d=n-3, f=d+1=n-2.
|

For n > 0, let T, denote the number of triangulations of a convex (n + 2)-gon. Thus
To = 1 (there is exactly one way to triangulate a triangle).

To derive a recurrence for T,,, we fix a distinguished side and look at the unique triangle
that contains it.

Lemma 6.2. Forn > 1, the numbers T,, satisfy

n—1
To=) TiTwiw
k=0
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Proof. Consider a convex (n-+2)-gon with vertices labeled vg, vy, . . ., v,41 in counterclockwise
order. Fix the base edge vov,11.

In any triangulation, the edge vyv,;1 belongs to exactly one triangle, whose third vertex
is some v; with 1 < j < n. This triangle (vo,v;,v,+1) splits the polygon into two smaller
convex polygons:

U2
U1
v
Yo
v
Us
e a left polygon with vertices v, v1,...,v;, which has j + 1 vertices and hence j — 1
diagonals in any triangulation;
e a right polygon with vertices v, vji1,...,vn41, which has (n + 2 — j) vertices and

hence (n — j — 1) diagonals in any triangulation.

By definition of 7T;,, the left polygon has 7);_; triangulations and the right polygon has 7;,_;
triangulations. For a fixed j, these choices are independent, so the number of triangulations
in which the third vertex is v; is

Tj1 Tnj-

Summing over all j =1,2,...,n gives

To=> T Tuj,

j=1

which is the same as .
To=) TiTuios

k=0

Theorem 6.3. For all n > 0, the number of triangulations of a convex (n + 2)-gon is the
nth Catalan number:
T, = C,.

Proof. We have shown that (7,) satisfies
n—1
Ty=1, T,=)» TTiay (n=>1).
k=0

The Catalan numbers (C,,) satisfy the same recurrence with the same initial condition. By
induction on n, a sequence determined by this recurrence and initial value is unique, so
T, = C, for all n. |
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Thus one of the standard interpretations of C,, is

C,, is the number of triangulations of a convex (n + 2)-gon by noncrossing
diagonals.

Triangulations also encode ways to split a polygon recursively into smaller pieces.

Definition 6.4. Fix a convex (n + 2)-gon P. A binary splitting scheme for P is a rooted
full binary tree whose

e root is labeled by P,

e cach internal node is labeled by a convex subpolygon of P with at least 4 vertices,
and has two children labeled by the two subpolygons obtained by drawing a diagonal
that splits it into two smaller convex polygons,

e cach leaf is labeled by a triangle.

Two splitting schemes are considered distinct if their associated binary trees differ as rooted
labeled trees.

Intuitively, a splitting scheme records the history of repeatedly drawing one diagonal at a
time until only triangles remain.

Corollary 6.5. For n > 0, the number of binary splitting schemes of a convex (n + 2)-gon
18 also C,,.

Proof. Given a binary splitting scheme, take the union of all diagonals drawn during the
splitting process. Because each step uses a diagonal that lies entirely inside the polygon
and never crosses previous diagonals, the final union of diagonals is a triangulation of the
polygon.

Conversely, given a triangulation, we can recover a binary splitting scheme by recursively
“undoing” diagonals. For example, fix a base edge vgv,1 and proceed as follows:

o Let (vo,v;, Upt1) be the unique triangle in the triangulation containing the base edge.
First split along the diagonal vyv; or v;v,41 to produce two smaller polygons.

e Recursively apply the same procedure inside each subpolygon (using the induced
triangulation) until only triangles remain.

This produces a binary splitting scheme whose set of diagonals is exactly the original tri-
angulation. The two constructions are inverse to each other, yielding a bijection between
triangulations and binary splitting schemes.

Since we already know there are C,, triangulations of a convex (n + 2)-gon, there are also
C,, binary splitting schemes. [

Triangulations already give one geometric realization of the Catalan numbers. Another
very clean euclidean picture comes from noncrossing matchings drawn as chords of a circle.

Definition 6.6. Place 2n labeled points in convex position on a circle, labeled 1,2,...,2n
in clockwise order. A moncrossing perfect matching is a collection of n disjoint chords such
that

e each point is an endpoint of exactly one chord, and
e no two chords intersect in the interior of the circle.

Let M, denote the number of noncrossing perfect matchings on 2n points.
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6

Figure. A noncrossing perfect matching on 2n = 8 points on a circle.

Lemma 6.7. The sequence (M,),>o satisfies

n—1
My =1, M, =Y My M, i forn>1
k=0

Proof. The case n = 0 corresponds to the empty matching. For n > 1, fix the point labeled
1. In any noncrossing perfect matching, point 1 is joined by a chord to exactly one other
point, say point 25 for some 1 < j < n.

The chord (1,25) divides the remaining 2n — 2 points into two blocks:

e the 2(j — 1) points strictly between 1 and 2j in clockwise order,
e the 2(n — j) points strictly between 25 and 1 around the other side.

Because the matching is noncrossing, these two blocks are completely independent: every
chord whose one endpoint lies in one block must have its other endpoint in the same block,
otherwise it would cross the chord (1, 27).

Thus, for fixed j, the number of noncrossing matchings where 1 is matched with 2j is

Mj—l Mn—j7

where M;_; counts matchings on the first block of 2(j—1) points and M,,_; counts matchings
on the second block of 2(n — j) points.
Summing over j = 1,2,...,n gives

n n—1
My = My My j=> My My 1y,
j=1 k=0

as claimed. [ |
Theorem 6.8. For all n > 0 we have
Mn = Cna

where C,, is the nth Catalan number.
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Proof. The Catalan numbers (C,,) satisfy the same recurrence
C() = 1, On = Ck Cn—l—k for n Z 1.
0

3
—

b
I

Since the recurrence together with My = Cy = 1 uniquely determines the sequence, induction
on n shows M,, = C,, for all n. [ |

Thus the Catalan number C), is also the number of noncrossing perfect matchings of 2n
points on a circle. This is another very geometric model: the Catalan structure is literally
encoded by nonintersecting chords in the plane.

6.1. Noncrossing partitions and chord diagrams. We can generalize the previous pic-
ture by allowing groups of more than two points to be connected together via chords.

Definition 6.9. Let [n| = {1,2,...,n}. A set partition 7 of [n] is noncrossing if, when the
numbers 1,2, ..., n are placed on a circle in clockwise order and the elements of each block
of 7 are joined by chords inside the circle, no two chords cross.

Let NC(n) denote the set of noncrossing partitions of [n].

2 1

4 5

Figure. A noncrossing partition of [6] with blocks {1,4}, {2,3,5}, and {6}.
A classical result states that
INC(n+1)| = C,.

We will not give the full proof here, but the idea is to encode a noncrossing partition via
a recursive decomposition very similar to the noncrossing matching argument: picking the
block containing 1 and looking at the induced subpartitions between its elements yields the
same Catalan recurrence.

Geometrically, this says that Catalan numbers count all ways to decompose a convex
polygon with labeled vertices into “clusters” of vertices joined by nonintersecting chords,
without insisting that each cluster is just a pair.

6.2. Higher polygon dissections and Fuss—Catalan numbers. Triangulations are just
one kind of polygon dissection. We can also ask for dissections into larger polygons, and this
leads to a natural generalization of the Catalan numbers.
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Definition 6.10. Fix an integer m > 1. A dissection of type m of a convex polygon is a
way to subdivide it into smaller polygons, each having exactly m + 2 sides, using noncrossing
diagonals.

Let D{™ denote the number of dissections of a convex polygon with
N=(m+1)n+2
vertices into (m + 2)-gons.
For m =1, DY counts triangulations of an (n 4 2)-gon, so DY = Chp.

Lemma 6.11. For fized m > 1, the numbers D satisfy

p{ =1, DmM= 3N DM™...D™ forn>1.
i1+ tim1=n—1
i;>0
Proof. Consider a convex polygon with N = (m + 1)n + 2 vertices, labeled vg, vy, ..., on_1

in order. Fix the base edge vovy_1.
In any dissection of type m, there is a unique (m + 2)-gon containing the base edge.
Suppose its other vertices are
Ujir Ujas oo+ Ujy
with
O<n<jgo<---<Jm<N-—-1
These m internal vertices, together with vy and vy_1, cut the large polygon into m + 1

subpolygons, each of which must itself be dissected into (m + 2)-gons. If the rth subpolygon
has

(m+1)i, +2

vertices, then dissecting it contributes a factor Dgn), and the condition that the total number
of vertices add up correctly forces

21—|—+2m+1:n—1

Conversely, any choice of nonnegative integers i1, ..., %,+1 summing to n — 1, together with
dissections of the corresponding subpolygons, glue together to give a valid dissection of the
original polygon.

Summing over all compositions n — 1 =4y + - -+ + 4,1 yields the recurrence. [ |

Theorem 6.12. For alln >0 and m > 1,

pm — 1 <(m+1)n>_

Comn+1 n

In particular, when m = 1 this reduces to

Idea of proof. The numbers
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are called the Fuss—Catalan numbers. One checks directly that

Cat{™ =1
and that they satisfy exactly the same (m + 1)-fold convolution recurrence as the D,(Zm):
Cat{™ = Z Catg") e Catz(»:ﬁl :

11+ +imt1=n—1
Since the recurrence with the given initial condition determines the sequence uniquely, we

must have D" = Cat!™ for all n.
|

7. GENERATING FUNCTIONS OF CATALAN NUMBERS

Let

C(z) = Z C.z2"

n>0
be the generating function of the Catalan numbers. Using our recurrence on C,,, we derive
a functional equation for C'(z).

Lemma 7.1. We claim that
C(z) =1+ 20(2)?

Proof. By (insert recurrence ref),

C(Z) = C() + Z Cn+12{n+1 =14 Z(Xn: CiCn—i)Zn+1

n>0 n>0 =0

Factoring out z, we get a Cauchy Product

Cz)=1 +ZZ (i C; C’n_i> M=1+z (Z C’izi> (Z Cjzj) =1+2C(2)%

n>0 \ =0 >0 7=>0

So we are done. [ |

Lemma 7.2. The functional equation
C(z) =1+ 20(2)?
has unique solution C(z) € C[[z]] with C'(0) = 1, namely
1-v1-4
C) = —5—

Proof. By quadratic formula,

SO = () +1=0 — Cfz) = L=VI742 V;_"‘Z

Expanding v/1 — 4z as a formal power series around z = 0,
V1—4z=1-22+0(z%).
Then
1+v1—-4z 14+(1-22+0(2?)) 2-2:4+0(z%) 1

11
2z 2z 2z z +0(2),
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which is not a formal power series since it has a pole at z = 0.
The other branch is

1—\/@: 1—(1-22+0(z%) :22—1-0(22)

=14+0
22 22 22 +0(2),
which is a genuine power series with constant term 1. Hence it is the unique solution in
C[[z]] with C'(0) = 1. |

Catalan numbers are not the only sequence whose generating function satisfies a sim-
ple algebraic equation. A closely related family is given by the Motzkin numbers, which
interpolate between Catalan numbers and central binomial coefficients.

Definition 7.3. A Motzkin path of length n is a lattice path from (0,0) to (n,0) using steps
U=(1,1),H =(1,0),D = (1,-1),

that never goes below the z-axis. Let M, be the number of Motzkin paths of length n, and
define the generating function

M(z) =Y M,2".

n>0
Lemma 7.4. The generating function M (z) satisfies
M(2) =142 M(2) + 2°M(z)*.
Proof. Consider a nonempty Motzkin path and inspect its first step.

If the first step is H, then the rest is an arbitrary Motzkin path. This contributes zM (z).
The factor z records the H, and M (z) encodes the remaining stuff.

If the first step is U, then there is a unique first return to the x-axis via a matching D.
Between U and D we have a possibly empty path staying strictly above the axis. Lowering
it by one unit gives another Motzkin path. After D comes a second Motzkin path. This
contributes 22M (z)2. One factor of z for U, one for D, and a factor of M (z) for each subpath.

Adding the empty path counted by 1, gives
M(z) =1+ zM(z) + 2°M(2)*.
as desired |

Solving this similarly to the Catalan GF, we get
1 —2v1— 22— 322
N 222 '

We can also derive this via its relation to the Catalan Numbers.

M(z)

Theorem 7.5. We claim that

ji:(ﬁ;zzlﬁ—jij (Z)]M%_l
k=0 k=1
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Proof. We expand the square root from M (z) as a power series. Note that

1—22—322=(1—2)* — 422

Thus
VI3 37— (1= 1— —2 (1= )iz -
—22-322=(1-=z - =(1-z —du,u = :
-2 T
Using the Catalan expansion
VI—du=1-2) Cut,
k>1
we obtain
V1—22-32=(1-2) (1—22(,%( )) (1-2) —QZC’k
k>1 k>1
Substitute this back into the closed form for M (z) to get
1—2—[(1—2)—22@1@%] o
M(z) = 7 =3 i
k>1
Hence
Z vyt (1—z)2% 1
k>0
Finally, expand the geometric factor to get
1 m+2k -2\ ,,
(1= 2)2h1 _Z( 2k — 2 )Z '
m>0
Therefore,
[n/2]
B mA+2k =2\ o n n
=y ay (M0 )= | () )
k>0 m>0 n>0 \ k=0

Extracting coefficients of 2" gives

2,
M =
=3 (%) C.
k=0
From this, we inversely see that
" /n
Cn—l—l = (k’) Mk
k=0
which gives
Cp=1+ (Z) M,
k=0 k=1

as desired.
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We also discuss a related type of numbers, namely the Narayana numbers, and their
algebraic relation to Catalan.

Definition 7.6. The Narayana Numbers N(n, k) refine the Catalan numbers by counting
Dyck paths of semilength n with exactly k peaks. Equivalently,

N(n,k):%(Z) (kﬁl),lgkgn.

i N(n, k) =C,,
k=1

where C,, is the nth Catalan number.

They satisfy

Proposition 7.7. Let N(n,k) be the Narayana numbers, i.e. the number of Dyck paths of
semilength n with exactly k peaks. Then the bivariate generating function

S(z,t)=> Y N(n, k)" "

n=1 k=1

s given by

1—2(t+1)— /1 —22(t+ 1)+ 22(t — 1)2
2tz '

S(z,t) =

Moreover, it can be expressed as

, 2%t
S(z,t) = 1—2z2(t+1) C((l —z(t+ 1))2> |

Proof. Let D be the set of all Dyck paths including the empty path. For a path P € D,
let |P| be its semilength and pk(P) its number of peaks. Define the bivariate generating

function
F(z,t) = Z ZPIPR(P) — 7 Z ZN(TL, k) 2"tk

PeD n>1 k=1

Then .
S(et) = 33 N pyenit = TED =L

t
n>1 k=1
Every nonempty Dyck path P has a unique decomposition
P=UADB,

where A, B € D are Dyck paths possibly empty, and U = (1,1), D = (1, —1).
We split into two cases
Case 1: A is empty Then P =UDB. The two steps UD form a peak at height 1, so

pk(P) =1+ pk(B),|P| =1+ |B|.
The contribution of all such paths to F'is

Z L1+ Bly1+pk(B) _ 4 Z S| Blypk(B) — ¢ F(z,1).
BeD BeD
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Case 2: A is nonempty Then P = UADB with A # (). The subpath A is a Dyck path
that starts at height 1 and returns to height 1; all its peaks are at height at least 2, but they

are still peaks of P. The outer U and D do not create a new peak at height 1 in this case.
Thus

pk(P) = pk(A) 4+ pk(B), |P| = 1+ |A[ + |B|.
The contribution of these paths is

Z Z S 1A+ Bl pk(A)+pk(B Z S Alpk(A) (Z z'Btpk(B)> =z (F(z,t)—l) F(z,t).

AeD BeD AeD BeD
Adding the empty path (counted by 1), we obtain the functional equation
F(z,t) =14 2tF(z,t) + 2(F(2,t) = D)F(z,t) = 1 + 2F(2,t)* + 2(t — 1) F(2,1).

Rewrite the equation as a quadratic in F’
2?4 2(t—-1D)F - F+1=0.
Solving for F' gives

1—2(t—1) & /1 —22(t+ 1) + 22(t — 1)2
22 '

At z = 0 we must have F'(0,¢) = 1 (only the empty path), so we choose the branch with
F(z,t) = 1+ O(z), namely

F(z,t) =

1—2@+1%~¢L—%@+1%+%@—1P‘

F(z,1) =

F(z,t)—1

, we obtain

Since S(z,t) =

S(z,t):l(1—Z(t+1)—\/1—2z(t+1)+22(t_1)2 _1>

t 2z

_ 1—z(t+1) — /1 —22(t + 1)+ 22(t — 1)2

2tz ’
which is exactly the claimed closed form.
Set
Az t) =1 =22(t+ 1)+ 22(t = 1)2 = (1 — 2(t + 1)) — 422,
Define
22t
w= 5
(1—=z(t+1))
Then

42t B A(z,t)

1—dw=1- 5 = 5
(1—z(t+1)" (1—=z(t+1))

S0
A(z,t)

1—dw=-—Y—"2
R e
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Hence the Catalan generating function satisfihaes

_1- V1—4w _1- VA2, 1) /(1= 2(t+1))
2w '

2w

C(w)

Now rewrite S(z,t)

L—2(t+1) — /A(z,1)

(1) = 2tz
1 —z(t+1) . A(z,t)
T 2tz C1—z(t+1)
- - vt ),
Since
1 —V1—4w=2wC(w)
and 2
T A e )
we get
C1—z(t+1) 1= z(t+1) 2’t
S(z,t)—T‘QwC(w) = = : (1—z(t+1))2 C(w)
z 2t
T 1-z(t+1) C((l—z(t+1))2) ’
as desired |

The GenFunc for Catalan numbers in itself does not seem to have many other applications.

As we have seen, though, it is often useful in parameterizing other sequences.
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