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Definition (Pattern Avoidance in Permutations). Let p be a permuta-
tion, and let q be a permutation of length k. We say that p contains q as a
pattern if there exist indices i1 < i2 < · · · < ik such that, for all 1 ≤ a, b ≤ k,
pia < pib if and only if qa < qb. If no such indices exist, we say that p avoids q.

Example Assume that we have a permutation p = (4, 2, 3, 1) and a pattern
q = (1, 2, 3) and there is no subsequence of p in increasing order. Thus, p avoids
q.

Example Assume that we have a permutation p = (5, 2, 3, 4, 1) and a pat-
tern q = (2, 1, 3) and there is no subsequence (a, b, c) of p such that b < a < c.
Thus, p avoids q.

Definition (Reverse of Permutations). We define reverse of a permu-
tation as f : Sn → Sn such that f(π1, π2, · · ·πn) = (πn, πn−1, · · ·π1) where
f(f(π)) = f(πn, πn−1, · · ·π1) = (π1, π2, · · ·πn) = π. Thus, f : Sn → Sn is it’s
own Inverse so it’s a Bijective function.

Example We have f(1, 2, 3, · · ·n) = (n, n− 1, n− 2, · · · 1) and f(n, n− 1, n−
2, · · · 1) = (1, 2, 3 · · ·n).

Definition (Complement of Permutations). We define complement of a
permutation as g : Sn → Sn such that g(π1, π2, · · ·πn) = (n + 1 − π1, n + 1 −
π2, · · ·n + 1 − πn) where g(g(π)) = g(n + 1 − π1, n + 1 − π2, · · ·n + 1πn) =
(π1, π2, · · ·πn) = π. Thus, g : Sn → Sn is it’s own Inverse so it’s a Bijective
function.

Example We have g(1, 3, 2) = (3, 1, 2) and g(3, 1, 2) = (1, 3, 2)
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1 Patterns of Length 2 and Length 3

The only possible permutations of length 2 are (1, 2) and (2, 1). If we have any
permutation π = (π1, π2, · · ·πn) then it will contain pattern (1, 2) if there is a
subsequence of length 2 in increasing order and contain pattern (2, 1) if there
is a subsequence of length 2 where the elements are decreasing. The only per-
mutation that avoids pattern (1, 2) is the permutation of decreasing order of n.
The only permutation which avoids pattern (2, 1) is the increasing order per-
mutation of n. We define Sn(q) to be total number permutations of [n] which
avoids pattern q.Thus,Sn(1, 2) = Sn(2, 1) = 1.

Lemma 1: Sn(123) = Sn(321)
If we have any permutation π = (π1, π2, · · ·πn) and contain pattern 123 then
there will be a subsequence of length 3 (πiπjπk) in increasing order and if we
reverse π we will have π′ = (π′

1π
′
2 · · ·π′

n) where π′i = πn−i+1 so we have a
subsequence of π′ (π′

n−k+1π
′
n−j+1π

′
n−i+1) = (πk, πj , πi) which is a decreasing

subsequence so π′ follow pattern (321).The function of mapping a permutation
to it’s reverse is a Bijective function as this function is it’s own inverse.Thus,
total number of permutations which follow pattern (123) is equal to permuta-
tions that follow pattern (321). Therefore, Sn(123) = Sn(321)

Lemma 2: Sn(132) = Sn(231) = Sn(312) = Sn(213)

We have f : Sn → Sn which map any permutation to its reverse and g : Sn → Sn

which map any permutation to its complement.If there is a permutation π =
(π1, π2, · · ·πn) and contain pattern 132 then there is a subsequence (πi, πj , πk)
where i < j < k and πi < πk < πj so f(π) = π′ = (π′

1, π
′
2 · · ·π′

n) where
π′
i = πn−i+1 and we have a subsequence (π′

n−k+1, π
′
n−j+1, π

′
n−i+1) = (πk, πj , πi)

which contain pattern (2, 3, 1). Thus, if a permutation avoid pattern (1, 3, 2)
then its reverse will avoid pattern (2, 3, 1). Therefore, Sn(132) = Sn(231) .
g(π′) = σ = (σ1, σ2 · · ·σn) where σi = n+1−π′

i and π′ contain pattern (2, 3, 1) so
for some i < j < k we have π′

k < π′
i < π′

j so we have a subsequence (σi, σj , σk) =
(n+1−π′

i, n+1−π′
j , n+1−π′

k) and it contains pattern (2, 1, 3). Thus, if a per-
mutation avoids pattern (2, 3, 1) then its complement will avoid pattern (2, 1, 3).
Therefore , Sn(231) = Sn(213). We have f(σ) = σ′ = (σ′

1, σ
′
2 · · ·σ′

n) where σ
contains pattern (2, 1, 3) so we have i < j < k such that σj < σi < σk and
we have a subsequence (σ′

n−k+1, σ
′
n−j+1, σ

′
n−i+1) = (σk, σj , σi) so it contains

pattern (3, 1, 2).Thus, if a permutation avoids pattern (2, 1, 3) then its reverse
will avoid pattern (3, 1, 2). Therefore, Sn(312) = Sn(213).We have proved that
Sn(312) = Sn(213) = Sn(231) = Sn(132)
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Lemma 3

For all positive integers n, we have Sn(123) = Sn(132).

Proof. There are several ways to prove this first nontrivial result of the sub-
ject. The one we present here is due to R. Simion and F. Schmidt. Recall that
an entry of a permutation which is smaller than all the entries that precede
it is called a left-to-right minimum. Note that the left-to-right minima form a
decreasing subsequence.

We are going to construct a bijection f from the set of all 132-avoiding
n-permutations to the set of all 123-avoiding n-permutations which leaves all
left-to-right minima fixed.

The map f is defined as follows. Keep the left-to-right minima of p fixed,
and write all the other entries in decreasing order. The obtained permutation
f(p) is always 123-avoiding as it is the union of two decreasing subsequences:
one of them is the sequence of all left-to-right minima, and the other is the
decreasing sequence into which we arranged the remaining entries.

Example If p = 67341258, then the left-to-right minima of p are 6, 3, and
1, therefore

f(p) = 68371542.

We would like to point out that the left-to-right minima of p and f(p) are the
same, even if some other entries of p have moved. Indeed, we can say that f
simply rearranges the m entries that are not left-to-right minima pair by pair.
That is, whenever we (impersonating the function f) see a pair of these entries
that is not in decreasing order, we swap them. This algorithm stops in at most
m steps. Moreover, each step of this algorithm moves a smaller entry to the
right and a larger one to the left, and therefore never creates a new left-to-right
minimum.

We note that this is the only 123-avoiding permutation with the given set
and position of left-to-right minima. Indeed, if there were two entries x and y
that are not left-to-right minima and form a 12-pattern, then the left-to-right
minimum z that is closest to x on the left, and the entries x and y would form
an increasing sequence.

Now we prove that f is a bijection by showing that it has an inverse. Let q
be an n-permutation that avoids 123. Keep the left-to-right minima of q fixed,
and fill in the remaining positions with the remaining entries, moving left-to-
right, as follows. At each step, place the smallest element not yet placed which
is larger than the closest left-to-right minimum on the left of the given position.
Call the obtained permutation g(q).

Example If q = 68371542, then the left-to-right minima of q are 6, 3, and
1. To the empty slot between 6 and 3, we put the smallest of the two entries
that are larger than 6, that is, 7. To the empty slot between 3 and 1, we put
the smallest entry not used yet that is larger than 3, that is, 4. Immediately on
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the right of 1, we put the smallest entry not used yet that is larger than 1, that
is, 2. We finish this way, by placing 5 and 8 to the remaining slots, to get

g(q) = 67341258.

The obtained permutation is always 132-avoiding. Indeed, if there were a
132- pattern in it, then there would be one which starts with a left-to-right
minimum, but that is impossible as entries larger than any given left-to-right
minimum are written in increasing order.

Note again that g(q) is the only 132-avoiding permutation that has the same
set and position of left-to-right minima as q. Indeed, if at any given instance, two
entries u < v that are larger than a left-to-right minimum a were in decreasing
order, then a v u would be a 132-pattern.

This proves that g(f(p)) = p, implying that f is a bijection, and proving our
theorem.

Theorem 4

For all positive integers n, we have Sn(132) = Sn(123).

Let cn = Sn(132). Suppose we have a 132-avoiding n-permutation in which
the entry n appears in the ith position. Then any entry to the left of n must
be larger than any entry to the right of n; otherwise, if x is on the left of n and
y is on the right with x < y, the triple xn y would form a 132-pattern.

Thus, the entries to the left of n must be

{n− i+ 1, n− i+ 2, . . . , n− 1 },

and the entries to the right must be the set [n − i ] = {1, 2, . . . , n − i}. There
are ci−1 possibilities for ordering the entries on the left and cn−i possibilities
for ordering the entries on the right.

Summing over all i gives the recursion

cn =

n−1∑
i=0

ci−1 cn−i. (4.1)

Let
C(x) =

∑
n≥0

cnx
n

be the ordinary generating function of the sequence (cn). Then (4.1) implies

C(x) = 1 + xC(x)2. (4.2)

Solving this quadratic equation for C(x) yields

C(x) =
1−

√
1− 4x

2x
. (4.3)
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Thus the sequence (cn) is the sequence of Catalan numbers, which estab-
lishes the theorem.

Corollary 5

Using Lemma 1 , Lemma 2 , Lemma 3 and Theorem 4 we have proved that
total number of permutations of length n which avoid any three letter pattern
is equal to the nth Catalan number.
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