
Probabilistic algorithm on Turing Machine

Zipeng (Leo) Lin

December 11, 2022

In this paper, we illustrate how some probabilistic algorithms might outdo original algo-

rithms in the scope of theory of computation. Specifically, this paper introduces probabilistic

Turing Machine (PTM), how it works, and some examples, including how PTM could rec-

ognize recursively enumerable sets, and how it might recognize some languages faster than

deterministic Turing Machine.

1 Introduction

Probabilistic methods used in computation have been used for problems that have probabilistic

concerns. For instance, Monto Carlo methods are used to obtain information about the behavior

of large systems. Monto Carlo methods could also be used to mimic integration and convolution.

2 Probabilistic Turing machine

The main tool to explore in this paper is probabilistic Turing machine, a computer that has ability

to make random decisions. That is, the same input might decide different outputs from the model

since the output is randomized.

1

We are motivated to explore whether adding randomness to the Turing Machine adds power

to its computation. Specifically, this paper tries to display some problems that can be solved by a

probabilistic Turing Machine better than the deterministic Turing Machine. The criteria in doing

“better“ includes solving problems in polynomial time by the probabilistic Turing Machine but

those problems are not possible to solve in polynomial time by the deterministic Turing machine

in polynomial time, since there have been literature that claims that adding randomness to Turing

Machine does not add computation power to the Turing Machine.

Definition 1 (Probabilistic Turing Machine). A Probabilistic Turing Machine is a tuple of nine

elements,

Mp = {Q,Σ,Γ, δ1, δ2, q0,t, qf , qr}

The meaning of those symbols are

1. Q is the set of states, Σ is the input alphabet, Γ is tape alphabet, t is the blank symbol.

2. q0, qf , qr are initial state, accepting state and rejecting state.

3. δ1, δ2 : Q × Γ → Q × Γ × {L,R} are two probabilistic transition function whose outputs

include whether moving one cell to the left or right on the tape.

4. We choose either δ1 or δ2 for transition function at each step. The probability to choose

either of them is 1/2.

We notice that the only difference a probabilistic Turing machine have from a deterministic

one is in the transition functions. PTM has two transition functions.

3 Error induced by PTM

Since the PTM is not deterministic, it is bound to make errors. Therefore, instead of the usual

definition of accepting a language by a Turing machine, a language N is said to be recognized

2

with error probability ε by a Turing machine M if:

Definition 2 (Error probability). A language N is said to be recognized with error probability

ε by a Turing machine M if: If a string s is in N , then Pr[M accepts w] ≥ 1 − ε, and the reject

probability is no smaller than 1− ε otherwise.

4 PTM accepting a recursively enumerable set

Recall the definitions induced by deterministic Turing Machines, a set S is recursively enumer-

able if there is a Turing machine M such that S = L(M). We can construct a probabilistic Turing

machine to accept S at a finite average run time.

Proof. We suppose a recursively enumerable set S is accepted by a Turing machine M , then we

construct a probabilistic machine M ′ by follows:

We repeat to flip a coin as long as it is not landing heads, and after each tail coin flip we

run one step of M(x) (x is the input), and if x is accepted here then we accept it. Besides, after

the coin toss is heads, then we do another coin flip, and if it is heads then we accept and reject

otherwise.

We have for x in S, we accept it with an probability bigger than 1/2 (so it is in the domain of

M’), and it not, we reject it with probability of 1/2 and is not in the domain of M ′. The average

run time would be 1/2 ∗ 2 + 1/4 ∗ 3 + . . . ≈ 3.

5 Example of PTM’s speedup

In this section, the paper gives a example of language that can be recognized more quickly by

one-tape PTM and one-tape DTM.

Here is the setup before giving the example: denote the ith symbol of a string w by w[i]. Let

r(n) to be the fraction of symbols in the first half of w, a string of length 2n, which equal the

corresponding symbols in the latter half of w. Also, define Pλ to be the palindrome-like language

3

of binary strings w of even length such that r(w) ≥ λ. If λ = 1, we can see that P1 would be a

palindrome, since the ratio of r(n) is one, which means all the characters in the first half is equal

to characters in the second half.

The example is the following

Example 3 (Language where PTM recognizes faster). Suppose that λ is a rational number such

that 0 < λ < 1. There is a one-tape PTM , M ′, that recognizes Pλ with bounded error probability

and runs faster for infinitely many inputs than every one-tape deterministic Turing machine that

recognizes Pλ. That is to say: if M is any one-tape deterministic Turing machine that recognizes

Pλ, then the maximum runtime of M ′ is less than the run time of M for infinitely many inputs [2].

The conclusion of the example above means that if M ′ is any one-tape deterministic Turing

machine that recognizes Pλ, then the maximum run time of M is less than the rum time of M ′ for

infinitely many inputs.

Lemma 4 (A PTM that has a good runtime). For every rational number r ∈ (0, 1) there is

one-tape probabilistic Turing machine M that recognizes Pr with bounded error probability and

maximum run time of O(n log n) for inputs in P1.

Proof. Consider a error probability bound ε > 0. Letm be an big integer such that ((1+λ)/2)m < ε.

This is possible because (1 + λ)/2 < 1 Suppose M0 is any standard one-tape deterministic Turing

machine that recognizes Pλ. Let M be a one-tape probabilistic machine that with input w operates

as follows.

Firstly, check the input length is even, and then get the binary representation of n called n′

(this takes O(n log n) steps for the Turing machine to convert and write.)

Secondly, select m numbers i1, i2, . . . , im such that 1 ≤ ij ≤ n. Those m numbers are decided

by choosing random bit from αj and add one to it after taking mod n. Then, we compare the

ijth entry of the string w and n + ijth entry of w for each j. If they are the same for each j

then we accept. Otherwise, we stop comparing and simulate the deterministic M0 to determine

4

whether the sting w belongs to Pr. We have the inputs in P1 are accepted by M by getting all

the n + ijth and ijth element the same. Therefore, it takes O(n log n) runtime because it takes

O(n log n) runtime to select and write down the bit.

After proving that we can accept using the PTM in O(n log n) runtime, we show that M is has

bounded error probability. That is to say, M recognizes Pr with error probability less than ε. We

have there are more than (1− λ)n of the numbers between 1 and n for i such that ith entry for w

is not equal to n + ith entry at w. We have 1 − (1 − λ)n/2n = (1 + λ)/2 is the probability that

the entry are the same. Therefore, the probability that they are the same for every j is at most

((1 + λ)/2)m < ε so we are done.

Another lemma used to prove the statement is that the deterministic Turing machine has

runtime O(n2). The proof of the lemma uses crossing sequence heavily, so it would be out of scope

of this paper.

6 Classes of languages for PTM

This section devotes to explore classes of languages computable probabilistically in polynomial

time and investigate relationships between those classes.

Definition 5 (Polynomial bounded). A probabilistic Turing machine is polynomial bounded if

there is a polynomial p(n) such that every possible computation of the machine on inputs of

length n halts in at most p(n) steps.

Definition 6 (Recognize). A probabilistic Turing machine recognizes a language if the machine

computes the characteristic function of the language.

Definition 7 (Several classes of languages). PP is the class of languages recognized by polynomial

bounded PTM’s. (Polynomial Probabilistic (TM)).

BPP is the class of languages recognized by polynomial bounded PTM’s with bounded error

probability (Bounded Polynomial Probabilistic (TM)).

5

ZPP is the class of languages recognized by PTMs with polynomial bounded average run time

and zero error probability.

Proposition 8 (Relationship between classes of langguages). We have

ZPP ⊂ BPP ⊂ PP

also, PP, BPP, and ZPP are closed under complementation. BPP and ZPP are closed under

union and intersection.

Proof. By definition, we have BPP ⊂ PP because of the definition. To prove that ZPP ⊂ BPP,

suppose a language L is recognized by a PTM M with no error and has a average polynomial

runtime O(p(n)). Consider another PTM, M ′, that recognizes the language L by simulating M

for up to cp(n) steps on inputs of length n. If the simulated computation of M does not halt, then

M ′ halts with an arbitrary answer since any number could work here. M requires more than cp(n)

steps with probability less than 1/c, the error probability of the polynomial bounded machine M ′

is at most 1/c. Therefore, if we pick c to be bigger than 2, 1/c < 1/2 so M would not require more

than cp(n) because the probability is less than one half here.

To prove that PP, BPP, and ZPP are closed under complementation, we can just change the

reject state to accept state and vice versa.

ZPP is closed under intersection because for two Turing machineM1 andM2 and their languages

L1 and L2, then we have L1 ∩L2 is also in ZPP since its runtime is less than the maximum of one

of it. For union, we have the runtime would be at most the sum of them, which is still in ZPP.

For BPP, we just need to make sure the error ε is still bounded for machines that recognize both

languages. Suppose L1 and L2 belong to BPP. For error ε > 0 we can find polynomial bounded

probabilistic Turing machines M1 and M2 that belong to BPP with error probability at most ε/2.

The machine that recognizes L1 ∪ L2 would have error probability at most ε/2 + ε/2 = ε, so BPP

is closed under union. For intersection, we can also pick machines with error probability ε/2.

6

7 Some conjectures and further work

There is an conjecture about P = BPP [1], and it is analogically to NP = P . The interpretation

behind P = BPP is that does randomness truly add power (can it recognize more strings?).

There is still progress on showing P = BPP , such as

• P ⊂ BPP

• P ⊂ P/poly, where P/poly is a class such that if a language L is in the class of P/poly,

the there is a function h(n) whose length |h(n)| is bounded by a polynomial of n such that

there is a deterministic polynomial-time Turing machine Md that takes 〈x, h(|x|)〉 and decides

whether it is in L.

In the future, the author will further explore the content of P/poly.

7

References

[1] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge

University Press, 2009.

[2] John T Gill III. “Computational complexity of probabilistic Turing machines”. In: Proceedings

of the sixth annual ACM symposium on Theory of computing. 1974, pp. 91–95.

8

	Introduction
	Probabilistic Turing machine
	Error induced by PTM
	PTM accepting a recursively enumerable set
	Example of PTM's speedup
	Classes of languages for PTM
	Some conjectures and further work

