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1. Introduction

In the theory of computation, we often find it useful to consider non-deterministic Turing
machines. Since the actual implementation of non-deterministic algorithms is impractical,
they exist only in theory. However, the potential non-determinism of computers through
means such as random number generators allows for the implementation of something else:
probabilistic Turing machines. Rather than simulating every computational path of a non-
deterministic Turing machine, a probabilistic Turing machine randomly selects a path based
on a probability distribution at each non-deterministic choice. As a result, the probability
of any computational path is the product of the probabilities of the choices made along the
path.

However, the added element of chance introduces a new issue: the resulting computational
path may result in a wrong answer. The measurement of the “incorrectness” of a probabilistic
Turing machine is used to help classify various new complexity classes, including randomized
polynomial time (RP) and bounded-error probabilistic polynomial time (BPP).

In this paper, we will touch on the relative positions of these new complexity classes, and
go more in-depth on a special problem known as the polynomial identity testing problem, or
PIT for short.

2. Probabilistic Turing Machines

Definition 2.1. A probabilistic Turing machine is the 8-tuple

M = (Q,Σ,Γ, δ1, δ2, q0, qf , qr)

where

• Q is the set of states,
• Σ is the input alphabet,
• Γ is the finite set of symbols called the tape alphabet,
• δ1 : Q× Γ → Q× Γ× {L,R} is the first probabilistic transition function,
• δ2 : Q× Γ → Q× Γ× {L,R} is the second probabilistic transition function,
• q0 ∈ Q is the initial state,
• qf ∈ Q is the accepting state,
• qr ∈ Q \ {qf} is the rejecting state,

and at each step, the Turing machine randomly applies either δ1 or δ2 with probability 1
2
.

This choice is made independently from all previous choices.

In essence, the computation of a probabilistic Turing machine on some input relies on
flipping a coin at each transition to decide what to do. Each series of coin flips results in a
unique computational branch, with the set of all computational branches forming a binary
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tree. If every computational branch of some probabilistic Turing machine M halts on some
input w, then we can define Pr[M accepts w] to be the fraction of computational branches
which end in the accepting state. Pr[M rejects w] is defined similarly.

The probabilistic Turing machine allows for some interesting definitions of new complexity
classes. Acceptance of a string can occur with error, and the magnitude of this error can
be used to distinguish between various complexity classes. Probabilistic Turing machines
accepting languages in this first complexity class, RP, are said to have “one-sided error”.

3. RP

Definition 3.1. Let t : N → N be a function. A language L is said to be in the time
complexity class RTime(t(n)) if there exists a probabilistic Turing machine M that runs in
O(t(n)), and on any input w,

• Pr[M accepts w] ≥ 1
2
if w ∈ L, and

• Pr[M accepts w] = 0 if w ̸∈ L.

We define the complexity class randomized polynomial time (RP) as the set of languages

RP =
∞⋃
k=1

RTime(nk).

What is so special about the probability 1
2
? As it turns out, we can replace this probability

with

1− 1

2q(|w|)

for any polynomial q, without altering the set of languages in RP. To show this, we define
RP′ similarly to RP, except for all inputs w ∈ L,

Pr[M accepts w] ≥ 1− 1

2q(|w|) .

Theorem 3.2. RP = RP′.

Proof. The relation RP′ ⊆ RP follows immediately from the definitions, so it remains to show
that RP ⊆ RP′. Let L be a language in RP, and let M be its corresponding probabilistic
Turing machine. The main idea is that we run M on an input many times to significantly
decrease our chance of error. We will create a new probabilistic Turing machine N that does
the following on an input w: run M on w q(|w|) times, and accept if at least one of the
branches accepts. Otherwise, reject. We will consider two cases: w ∈ L and w ̸∈ L.
If w ∈ L, then

Pr[M rejects w] ≤ 1

2
.

Furthermore, N rejects w if and only if M rejects w for all q(|w|) runs, so

Pr[N rejects w] ≤ (Pr[M rejects w])q(|w|) =
1

2q(|w|) .

Finally,

Pr[N accepts w] ≥ 1− 1

2q(|w|) .

If w ̸∈ L, then M rejects w with probability 1, so N will also reject w with probability
1. Since N runs M q(|w|) times, and each run takes polynomial time, N must also run in
polynomial time. Hence, L ∈ RP′, and RP = RP′. ■
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Theorem 3.3. P ⊆ RP ⊆ NP.

Proof. The first relation is obvious; a deterministic Turing machine can be interpreted as a
probabilistic Turing machine where the two transition functions are identical. For the second
relation, consider a probabilistic Turing machine M accepting some language L ∈ RP. For
any input w ∈ L, Pr[M accepts w] ≥ 1

2
, so there must be some accepting path. On the

other hand, if w ̸∈ L, then Pr[M accepts w] = 0, so there are no accepting paths. Hence, by
running M as a non-deterministic Turing machine and traversing all possible paths, we can
deduce that L ∈ NP. ■

Definition 3.4. We define the class coRP to be the coRP = {L : L ∈ RP}. In particular, a
language L is in coRP if there exists a probabilistic Turing machine M running in polynomial
time such that for any input w,

• Pr[M accepts w] = 1 if w ∈ L, and
• Pr[M accepts w] ≤ 1

2
if w ̸∈ L.

4. BPP

Before introducing BPP, we will first define a term used to describe the “incorrectness” of
a probabilistic Turing machine.

Definition 4.1. We say that a language L recognized by a Turing machine M with error
probability ϵ if for all strings w,

• Pr[M accepts w] ≥ 1− ϵ if w ∈ L, and
• Pr[M accepts w] ≤ ϵ if w ̸∈ L.

In other words, the probability that M is incorrect on any input is less than ϵ.

Definition 4.2. A language L is in bounded-error probabilistic polynomial time (BPP)
if there exists a probabilistic Turing machine M running in polynomial time with error
probability 1

3
. In particular,

• Pr[M accepts w] ≥ 2
3
if w ∈ L, and

• Pr[M accepts w] ≤ 1
3
if w ̸∈ L.

Turing machines accepting languages in BPP are said to have “two-sided error”. Like in
the definition of RP, the error probability 1

3
is arbitrary. In fact, one can show that an error

probability as high as
1

2
− 1

p(|w|)
for some polynomial p or as low as

1

2q(|w|)

for some polynomial q will yield the same class BPP. We will omit the proof in this paper,
but it can be found in [1].

Theorem 4.3. We have the following relations:

• BPP = coBPP,
• P ⊆ RP ∪ coRP ⊆ BPP.
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Proof. The first relation is due to the symmetric definition of BPP. Consider a probabilistic
Turing machine M accepting some L ∈ BPP. Then, by constructing a Turing machine N
that runs M and reverses the output, we obtain that L̄ ∈ BPP, so L ∈ coBPP. Hence,
BPP ⊆ coBPP, and similarly, coBPP ⊆ BPP, so BPP = coBPP.
The second relation is trivial by the definitions of the classes. ■

Nowadays, BPP is considered to be the most exhaustive class of problems which can be
solved efficiently on modern machines, a title previously held by the complexity class P. It
is still unclear whether BPP = P, and there exist languages in BPP not yet shown to be in
P. However, the number of such languages is decreasing, and it is commonly believed that
BPP = P. In this final section, we will take a deeper dive into one of these languages.

5. Polynomial Identity Testing

The polynomial identity testing problem asks when given two multivariate polynomials
p(x1, . . . , xn) and q(x1, . . . , xn) over some field F, if p and q are equal. This is equivalent
to determining whether their difference p− q is the zero polynomial. However, the problem
assumes that you are only given an oracle (black box) that computes the polynomial for you.
That is, you are given no information about the actual coefficients of the polynomials, but
you may input values into the oracle to receive an output. As there are various models of
the problem, we will establish our assumed model below.

Question 5.1. (Polynomial Identity Testing Problem) Given an oracle which computes poly-
nomial p(x1, . . . , xn) of degree d over some field F, does there exist a1, . . . , an ∈ F such that
p(a1, . . . , an) ̸= 0?

We will show that this problem is in BPP, and in fact, coRP as well (under certain
conditions). The heart of the proof lies in the following lemma.

Theorem 5.2. (Schwartz–Zippel lemma) Let p(x1, . . . , xn) be a nonzero polynomial over a
field F with degree d. Given some finite set S ⊆ F, for randomly selected a1, . . . , an ∈ S,

Pr[p(a1, . . . , an) = 0] ≤ d

|S|
.

Proof. We will use induction on n, the number of variables in p. For n = 1, p has at most d
roots, so the statement is trivial.

Suppose the statement holds for all n ≤ k − 1 variables. Then, consider a polynomial
p(x1, . . . , xk). We can rewrite p as a polynomial in x1 by setting

p(x1, . . . , xk) =
k∑

i=0

xi
1pi(x2, . . . , xk).

Let m be the maximum value such that pm is not the zero polynomial. Since xm
1 pm has

degree at most d, we know that pm has degree at most d−m. Suppose we randomly choose
a1, a2, . . . , ak ∈ S. By our induction hypothesis,

Pr[pm(a2, . . . , ak) = 0] ≤ d−m

|S|
.

Now, define the polynomial

q(x1) =
k∑

i=0

xi
ipi(r2, . . . , rk).
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We will denote the events pm(a2, . . . , ak) = 0 by A and q(a1) = 0 by B. Note that if A
doesn’t occur, then q(x1) has degree m, so by our induction hypothesis

Pr[B | ¬A] ≤ m

|S|
.

Combining everything, we have that

Pr[B] = Pr[B ∧ A] + Pr[B ∧ ¬A]
= Pr[B ∧ A] + Pr[B | ¬A] · Pr[¬A]
≤ Pr[A] + Pr[B | ¬A]

≤ d−m

|S|
+

m

|S|
=

d

|S|
.

■

Theorem 5.3. The polynomial identity testing problem is in coRP given that d < |F|.

Proof. Let S ⊆ F be a finite set of size d + 1. Our algorithm will repeatedly select values
a1, . . . , an randomly from S, for a total of d + 1 iterations. We accept if for any iteration,
p(a1, . . . , an) ̸= 0, and reject otherwise. If p is indeed the zero polynomial, then our algorithm
will clearly reject. Now suppose p is nonzero. For each selection of values a1, . . . , an, we know
by the Schwartz-Zippel lemma that

Pr[p(a1, . . . , an) = 0] ≤ d

d+ 1
.

Hence, if we perform this selection d+1 times, the probability that the polynomial evaluates
to 0 for all d+ 1 selections reduces to at most(

d

d+ 1

)d+1

=

(
1− 1

d+ 1

)d+1

≤ 1

e
.

Thus, when p is nonzero, we accept with probability at least 1− 1
e
. Clearly, this satisfies the

conditions of coRP, so we know that PIT is in coRP and hence BPP as well. ■
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