
Quantum Computing

Roger Fan

December 11, 2022

1 Introduction

In classical physics, physical systems are always assumed to be in one state at a time.
However, modern quantum mechanics tells us that this is not actually how the world works.
Instead, quantum systems can be in a superposition of many different classical states at the
same time, and when we measure the system, the system then collapses into one of these
classical states. In practice, we model a pure quantum state |φ〉 as a linear combination of
its N classical states, which are written as |0〉, |1〉 , . . . , |N − 1〉:

|φ〉 = α0 |0〉+ α1 |1〉+ · · ·+ αN−1 |N − 1〉
Each coefficient αi is called the amplitude of |i〉 in |φ〉, and is a complex number. These

quantum states are really vectors in the N -dimensional Hilbert space spanned by the or-
thonormal basis vectors |0〉, |1〉 , . . . , |N − 1〉, and we may write |φ〉 as a column vector:

|φ〉 =

α0

...
αN

The conjugate transpose of |φ〉, which is denoted 〈φ|, is also of importance.

〈φ| =
[

α0 α1 · · · αN−1

]

We call |φ〉 a “ket”, and 〈φ| a “bra”. We may put these two together to make 〈φ|ψ〉,
called a “bracket,” which is the dot product 〈φ| · |ψ〉. Note that 〈·|·〉 is really a Hermitian
inner product, which is the analogue of inner products in complex vector spaces.

1.1 Qubits

A qubit is a quantum bit; that is, a quantum state with only two classical states. Qubits
can hold much more information than their classical counterparts, and are expressed as

|φ〉 = α |0〉+ β |1〉
From the theory of quantum mechanics, Born’s Rule tells us that when measured, |φ〉

collapses into the state |0〉 with probability |α|2 and state |1〉 with probability |β|2. Thus
|α|2 and |β|2 must sum to 1.

The ℓ2 norm of a complex vector ~v = (a0, · · · , an−1) is
∑n−1

i=0 |ai|2, so we say that any
valid qubit has a ℓ2 norm of 1.

1

1.2 Tensor Product

When we work with more than one qubit, we must begin using the language of tensor
products. Intuitively, we should expect this to be the case. For demonstration, say A and
B are two random, classical bits, where A has a 0.5 chance of being 0 or 1, and B has a 0.3
chance of being 0 and a 0.7 chance of being 1. We may write the distributions for A and B
as column vectors:

A =

[

0.2
0.8

]

← 0
← 1

B =

[

0.3
0.7

]

← 0
← 1

The state of both A and B should be a distribution with 4 different outcomes, which we
can write as a 4 dimensional probability vector

A⊗ B =

0.06
0.14
0.24
0.56

← 00
← 01
← 10
← 11

A ⊗ B is the tensor product of the two vectors A and B. This situation is completely
analogous for quantum systems.

More formally, let P and Q be two quantum systems. Let BP and BQ be the sets of
classical states of P and Q, which each are orthonormal bases of the vector spaces V and
W , respectively.

Then, for all bP ∈ BP and bQ ∈ BQ, we define bP ⊗ bQ as new orthonormal vectors, which
span the space V ⊗W .

Let x =
∑

b∈BP
xbb be a quantum state of P , and let y =

∑

b∈BQ
ybb be a quantum state

of Q. Then, the tensor product of x and y is defined as

x⊗ y =
∑

b∈BP

∑

c∈BQ

xbycb⊗ c

Example 1.2.1. Let A and B be two qubits, which have quantum states |φ〉 = 1√
2
(|0〉 − |1〉)

and |ψ〉 = 1√
2
(|0〉+ i |1〉). Then, we may compute (using FOIL) that

|φ〉 ⊗ |ψ〉 = 1

2
(|00〉+ i |01〉 − |10〉 − i |11〉)

We have written |0〉 ⊗ |0〉 as |00〉 for shorthand. (Later, this will sometimes be denoted
|0〉 |0〉.) Note that |00〉 , |01〉 , |10〉 , |11〉 are classical states of the quantum system including
both A and B. |00〉 is the classical state where both A and B have value 0.

We call systems of n qubits a n-qubit register. However, not all states of n-qubit registers
can be represented as tensor products. Entanglement is the quantum phenomenom when
two qubits affect each other. For example, consider the 2-qubit register with state

1√
2
(|00〉+ |11〉)

The two qubits are always the same! Such a pair of qubits is called an EPR-pair, after
Einstein, Podolsky, and Rosen.

2

1.3 Unitary Transformations

In classical computing, we use the logic gates AND, OR, and NOT to construct circuits. In
the quantum case, there are also gates that act on qubits. In general, these gates are linear
operations on qubits that can be represented as matrices. In fact, all such linear operations
must be unitary, which means they preserve the ℓ2 norm of vectors. Intuitively we should
find this easy to believe, as these transformations take qubits to other qubits, which all must
have a ℓ2 norm of a 1. (Unitary matrices are also exactly the matrices U such that UU † = I,
where U † is the conjugate transpose of U .)

The Hadamard gate, or H gate for short, is a unitary transformation that acts on a single
qubit. It is described by the matrix

H =
1√
2

[

1 1
1 −1

]

In other words, H maps |0〉 to 1√
2
(|0〉 + |1〉), and maps |1〉 to 1√

2
(|0〉 − |1〉). The reader

may check that the Hadamard transform is its own inverse.
Another 1-qubit gate is the phase gate Rφ, which maps |0〉 to |0〉 but |1〉 to eiφ |1〉. This

can be represented by the matrix

Rφ =

[

1 0
0 eiφ

]

There are some gates on two qubits, such as the CNOT gate. The CNOT gate takes in
two qubits, and flips the second one if the first qubit is 1. As a matrix, it can be represented

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

The CNOT gate may be upgraded to the Toffoli Gate, also known as the CCNOT gate,
which takes in 3 qubits and negates the third if and only if the first two qubits are 1. In
other words, it maps

CCNOT |A〉 ⊗ |B〉 ⊗ |C〉 = |A〉 ⊗ |B〉 ⊗ |C XOR (AANDB)〉

These are all the gates that we will use. However, there are many more that exist. It is
worth remembering that all quantum gates are linear operators, and to compute the effect
of a quantum gate on a qubit, we often will compute what it does to the basis vectors.

Example 1.3.1. Let a register of two qubits be in the state 1√
2
(|00〉 + |10〉). If CNOT is

applied to this register, we may compute the resulting state by first computing

CNOT |00〉 = |00〉 , CNOT |10〉 = |11〉

Since CNOT is a linear operator, we easily compute

CNOT
1√
2
(|00〉+ |10〉) = 1√

2
(|00〉+ |11〉)

3

Often, we will have a register of multiple qubits where we will apply different gates to
each of them. To compute the effects of such an operation, we use the tensor product of
linear maps. Let V and W be two vector spaces, and let f and g be linear maps (which
represent gates) from V to V and W to W , respectively. Then, if v ∈ V and w ∈ W , define
f ⊗ g as the linear map in V ⊗W that maps

f ⊗ g : (v ⊗ w) 7→ f(v)⊗ g(w)

f is the gate that we apply to the vector space V , and g is the gate we apply to the vector
space W .

Example 1.3.2. Given a 2-qubit register in the state 1√
2
(|00〉+|11〉), let us compute the effect

of using the Hadamard transform on the first qubit. The transformation we are applying is
H⊕ I, as we apply H to the first qubit, and the identity transformation to the second. Then,

(H ⊕ I) |00〉 = 1√
2
(|0〉+ |1〉)⊗ |0〉

(H ⊕ I) |11〉 = 1√
2
(|0〉 − |1〉)⊗ |1〉

(H ⊕ I) 1√
2
(|00〉+ |11〉) = 1

2
(|00〉+ |01〉+ |10〉 − |11〉)

For shorthand we will often denote X ⊗X ⊗ · · · ⊗X as X⊗n. We conclude this section
with an important example.

Example 1.3.3. Given an n-qubit register in the state |a〉, where a is a length n binary
string, what happens when we apply Hadamard gates to each qubit? The transformation is
H⊗n, and

H⊗n |a〉 = 1√
2n

∑

i∈{0,1}
(−1)i·a |i〉

Here, i · a is the dot product on length n binary strings. For example, 011 · 110 = 1.

1.4 Projective Measurement

We have seen that when we measure a quantum state, it collapses into a classical state. This
is called a wave function collapse. We shall be mainly focused here on the simplified case of
measuring certain qubits of a n-qubit register.

Let {0, 1}n be the string of all binary n-digit strings. Given a state |φ〉 = ∑

i∈{0,1}n ai |i〉,
if we measure the first qubit, by Born’s rule, it will be a 1 with probability

∑

i∈S
|ai|2

Here, S is the set of all n-digit binary strings that begin with 0. What happens to |φ〉 once
we measure the first bit?

4

If the first bit is measured to be true, we would expect |φ〉 to collapse into

|φ〉 7→
∑

i∈S
ai |i〉

However, this new state does not have a ℓ2 norm of 1, so we must fix this by dividing by
a suitable factor:

|φ〉 7→
∑

i∈S ai |i〉
√

∑

i∈S |ai|2

Example 1.4.1. Given the EPR-pair 1√
2
(|00〉 + |11〉), let us measure the first bit. The

probability that the first bit is 0 is
(

1√
2

)2

= 1
2
. If we measure the first bit to be a 1, then |φ〉

collapses to
1√
2
|00〉
1√
2

= |00〉

This makes sense, since in any EPR-pair, if the first qubit is 0, then the second qubit
must also be 0.

2 Quantum Algorithms

2.1 Quantum Circuit Model

In classical computing, a circuit is an acyclic directed graph consisting of n input nodes,
which have n input bits, m output nodes, and some number of the logic gates AND, OR,
and NOT. We say that a circuit computes the function f : {0, 1}n → {0, 1}m if for every
length n binary string x, the circuit outputs f(x).

It is known that circuits, in some sense, are equal in power to deterministic Turing
Machines. That is, for every deterministic Turing machine that decides a language L in P
time, it is possible to construct a circuit with n inputs that has polynomially many gates
and only accepts (outputs 1 on) the length n strings in L.

Meanwhile, quantum circuits begin with n qubits and apply quantum gates to them
sequentially. Notably, any polynomially-sized circuit can be simulated by a quantum circuit
with polynomially many Toffoli gates, which can simulate AND, OR, and NOT gates on
qubits. That is, quantum circuits are at least as powerful as classical ones.

The power of quantum computing comes with quantum parallelism, which is the idea that
we may compute a function f(x) on a superposition of states rather than just a single one.
Say we have a classical circuit that computes the function f : {0, 1}n → {0, 1}. Then, we may
construct an equivalent quantum circuit U using Toffoli gates that maps |z〉 |0m〉 → |z〉 |f(z)〉
for all z ∈ {0, 1}n. Then, applying U to some superposition of all such z, we have

U

∑

z∈{0,1}n
αz |z〉 |0m〉

 =
∑

z∈{0,1}n
αz |z〉 |f(z)〉

5

It seems as if we’ve done exponentially many computations with a single application of
U ! However, the values of f(z) are not readily accessible to us, as they are locked inside
a quantum state. After measuring the quantum state, we lose most of the information.
Quantum algorithms will need to use quantum parallelism with the ideas of entanglement
and interference to perform efficient computations.

2.2 Bernstein-Varizani

The inputs to quantum algorithms are not usually qubits, but rather oracles, which are
black-boxed quantum gates. This may seem rather strange at first, but results will easily
follow from this setting later.

We begin with the Bernstein-Varizani problem, which was one of the earliest quantum
algorithms discovered.

Problem 2.2.1 (Bernstein-Varizani). Let a ∈ {0, 1}n be unknown. For each i ∈ {0, 1}n, let
xi = a · i (mod 2). We are given an oracle O that maps

O |i〉 |b〉 → |i〉 |bXOR xi〉
Compute a.

With a classical circuit, a simple algorithm would need n queries to Ox for information-
theoretic reasons. For example, we could ask the oracle to compute O |100 · · · 0〉, which
would give us a0, the first digit of a. Then, we could ask to compute O |010 · · · 0〉, and so
on, to compute all n digits.

However, things become quite different with quantum circuits. Construct a new qubit
|−〉 = 1√

2
(|0〉 − |1〉), and compute O |i〉 |−〉:

O |i〉 |−〉 = |i〉 1√
2
(|xi〉 − |1− xi〉) = (−1)xi |i〉 |−〉

Let us construct a new oracle O± that takes in |i〉 and spits out the qubits of O |i〉 |−〉
excluding the final qubit |−〉. That it, O± |i〉 is (−1)xi |i〉.

Construct n qubits |0〉, for an initial state of |0n〉. Apply Hadamard gates to each of the
n qubits, which gives

H⊗n |0n〉 = 1√
2n

∑

i∈{0,1}n
|i〉

Now, apply the oracle O± to these qubits, which gives

O±

1√
2n

∑

i∈{0,1}n
|i〉

 =
1√
2n

∑

i∈{0,1}n
(−1)xi |i〉

Recall xi = a · i. The above expression looks familiar; in fact, it is exactly H⊗n |a〉! H⊗n

is its own inverse, so if we apply Hadamard transforms to each of our qubits, our qubits
must now be in the state |a〉. By measuring each qubit, we have now computed a, and we
are done.

Note that we have computed a by using only one query to O, which is significantly faster
than classical algorithms. This problem may not seem very impressive, but this is only the
beginning.

6

Quantum Fourier Transform

The quantum fourier transform computes the fourier transform of a qubit, in some sense.
Formally, let ωN = e2πi/N be an N -th root of unity, and define the matrix FN as the matrix
that has ωjk

N as its entry in cell (j, k):

FN =
1√
N

...

· · · ωjk
N · · ·
...

FN is a unitary transformation, and if N = 2n, then it can be viewed as a quantum gate
on n qubits. (In fact, note F2 = H.) For the basis states |k〉, where k ∈ {0, 1}n, we note
that

FN |k〉 =
1√
N

N−1
∑

j=0

ωjk
N |j〉

If the reader is familiar with the discrete fourier transform, they must note that the
quantum fourier transform does something fundamentally different. Rather than compute
the discrete fourier transform, the quantum fourier transform encodes the information in a
system of qubits.

Let |k〉 be a basis vector, so that k is a length n string. Again, let N = 2n. For any
integer j in binary, written as j1 . . . jn,

j
2n

=
∑n

l=1 jl2
−l. Using this, we may cleverly observe

that

FN |k〉 =
1√
N

N−1
∑

j=0

e2πijk/2
n |j〉

=
1√
N

N−1
∑

j=0

e2πik(
∑n

l=1
jl2

−l) |j1 · · · jn〉

=
1√
2n

N−1
∑

j=0

n
∏

l=1

e2πijlk/2
l |j1 · · · jn〉

=
n

⊗

l=1

1√
2
(|0〉+ e2πik/2

l |1〉)

If the binary digits of k are k1k2 . . . kn, note e
2πik/2l = e2πi0.kn−l+1...kn . In the n = 3 case,

F8 |k1k2k3〉 =
1√
2
(|0〉+ e2πi0.k3 |1〉)⊗ 1√

2
(|0〉+ e2πi0.k2k3 |1〉)⊗ 1√

2
(|0〉+ e2πi0.k1k2k3 |1〉)

We now describe an algorithm to compute FN of |k〉 using quantum gates. Define a new
gate, the Rs gate, which acts on a single qubit:

Rs =

[

1 0
0 e2πi/2

s

]

7

The controlled-Rs gate is a gate that takes in 2 qubits and applies Rs to the second qubit
if and only if the first qubit is 1.

We begin with n qubits in the states |k1〉 , . . . , |kn〉, which also is the state |k〉. Apply the
Hadamard transform on |k1〉 to get

H |k1〉 =
1√
2
(|0〉+ (−1)k1 |1〉) = 1√

2
(|0〉+ e2πi0.k1 |1〉)

Now apply the controlled-R2 gate on the first qubit, with the second qubit |k2〉 as the
control. That is, this gate will apply R2 on the first qubit if k2 is 1. The first qubit becomes

1√
2
(|0〉+ e2πi0.k1 |1〉) 7→ 1√

2
(|0〉+ e2πi0.k1k2 |1〉)

We will continue on in this fashion: use controlled-Rs gates on the first qubit, with the
s-th qubit as the control. After performing these gates, we end up with the qubit

1√
2
(|0〉+ e2πi0.k1k2k3··· |1〉)

(As a spoiler, we have constructed the last qubit in the fourier transform of |k〉.) We now
move on to the second qubit, |k2〉. Apply the Hadamard transform:

H |k2〉 =
1√
2
(|0〉+ (−1)k2 |1〉)

For each s > 2, apply the controlled-Rs gate on the second qubit, with the s-th qubit
|ks〉 as the control. After these gates, the second qubit will be in state

1√
2
(|0〉+ (−1)k2k3··· |1〉)

(This is the second to last qubit in the fourier transform of |k〉.) We now proceed to the
third qubit, which we analogously transform into 1√

2
(|0〉 + (−1)k3k4··· |1〉), and so on. After

doing this for all qubits, we are done, except that the qubits are all in reverse order. Reverse
their order, and we are done! We have used on the order of n2 quantum gates to compute
the fourier transform of |k〉 from |k〉.

2.3 Shor’s Factoring Algorithm

Arguably the most important quantum algorithm is Shor’s factoring algorithm, which factors
an integer in time polynomial in the number of digits. There is no known classical algorithm
that is nearly as fast, and if Shor’s algorithm is fully realized, it could break modern cryp-
tography, which is reliant on the fact that factoring large integers is hard for a computer to
do efficiently.

We now describe Shor’s algorithm. Given some integer n, and some integer x, we will
find the period of x in the multiplicative group Z

×
n . This will allow us to factor n, which we

will describe later.

8

There is a classical circuit that, given a, will compute xa (mod n) in O(log a) time using
repeated squaring. Convert this circuit into a quantum circuit, and let us call it the quantum
oracle Ox.

Let q = 2p be the power of 2 such that n2 ≤ q < 2n2. Construct a p-register of qubits,
all with state |0〉. Then, apply Hadamard transforms to each one, so that the state becomes

1√
q

q−1
∑

a=0

|a〉

Construct now a second p-register of qubits, all initially set to |0〉. Apply the quantum
oracle Ox to our two registers of qubits, so that given some integer a represented in the first
register, it will transform the second register into xa (mod n). Our system becomes

1√
q

q−1
∑

a=0

|a〉 |xa mod n〉

Perform a fourier transform on the first register of qubits, so that our system becomes

1

q

q−1
∑

a=0

q−1
∑

c=0

exp(2πiac/q) |c〉 |xa mod n〉

Now, measure all the qubits. Let {rc}q be the unique integer in the interval (−q/2, q/2]
that is congruent to rc modulo q. Shor shows in his original paper that for sufficiently large
n, if −r/2 ≤ {rc}q ≤ r/2, the probability of measuring any state |c〉 |xa mod n〉 is at least
1

3r2
.
If −r/2 ≤ {rc}q ≤ r/2, then there exists some d such that

−r/2 ≤ rc+ dq ≤ r/2

This is equivalent to
∣

∣

∣

∣

c

q
− d

r

∣

∣

∣

∣

≤ 1

2q

Two fractions with denominators at most n are always at least 1
n2 away from each other.

r < n, so it follows that d
r
is the unique fraction with denominator at most n that satisfies

∣

∣

∣

c
q
− d

r

∣

∣

∣
≤ 1

2q
. We know c and q, so we may compute d

r
by using the continued fraction

expansion of c
q
, which computes the best fractional approximations to c

q
.

Once we compute d
r
, the denominator r is the period we wish to find. This only works,

of course, if d and r are relatively prime, but this happens reasonably often. This algorithm
from start to finish has a success probability of at least 1

log log r
, so we expect to repeat it on

the order of log log r times. Each repetition takes polynomial time in log n, which makes it
very efficient.

Let us now use this to factor n. This will not work when n is even or when n is a prime
power, but these cases are efficiently computable by classical computers anyways. Let us
choose an arbitrary x < n, and compute its period r. Repeat this process until we find some

9

x with even period, which has been shown to happen at least 1
2
of the time. Because xr = 1

(mod n), we may factor this as

(xr/2 + 1)(xr/2 − 1) = xr − 1 = 0 (mod n)

It can also be shown that gcd(xr/2 + 1, n) is a nontrivial divisor of n more than half the
time as well. Thus, we may use repeat this algorithm to find a divisor of n, which is expected
to take only polynomial time in log n. This is exponentially faster than any known classical
algorithms.

References

[1] Birgitta Whaley, Kevin Young, Mohan Sarovar. Measurement in Quantum Mechanics

[2] Ronald de Wolf. Quantum Computing: Lecture Notes

[3] Daniel Grier. Quantum Complexity Theory

10

