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1 Format

We first define a quantum Turing Machine(QTM). Then, we take a look at
the corresponding complexity class, BPQ. Then, we will shift focus and explore
some famous quantum algorithms

2 Assumptions

We assume knowledge of basic computation models up to and including the
Turing Machine. We also assume knowledge of complexity classes.

3 Quantum Turing Machine

A quantum Turing machine(QTM) is defined similar to how a deterministic
Turing machine is defined. That is, A set of finite states, an input and tape
alphabet, a blank symbol, the start state, and the end state. The representation
of a quantum Turing machine, however, is not universally agreed upon. How-
ever, all models adds a set of configurations, (q, T, i), where the machine is at
a state q, the tape contains T, and the head points to the ith cell of the tape.
This configuration is either embedded in the description of the transition func-
tion ∆ via a transition matrix, or completely separate. However, in both cases,
the QTM is modified as the configuration, according to some matrix/unitary
U. Just as how P and NP stem from the languages a deterministic and nonde-

terministic Turing machine can accept, respectively, the complexity class that
QTMs accept is called BQP. Quantum algorithms are inherently probabilistic,
or not always guaranteed to produce a right answer. Similar to P or NP, lan-
gauges in BPQ can be decided by a QTM in polynomial time, and will correctly
solve the problem 2

3 of the time. Formally, a language L is in BQP if and only
if there exists a QTM that accepts L with probability no less than 2

3 .
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4 Quantum Algorithms

A quantum algorithm is an algorithm that can be performed by a QTM. That is,
a set of instructions I that when performed on a QTM, computes a language in
BQP. However, using a QTM does not allow for additional computational power;
a QTM is equivalent to a standard Turing Machine in that all the langauges
that can be computed by a QTM can also be computed by a TM. So what makes
QTMs so interesting then, is the possible reduced computation time compared
to a TM. Commonly, these algorithms are not actually performed on a QTM,
but an equivalent model of computation, a quantum circuit.

4.1 Quantum Circuits

We won’t formally define quantum circuits nor will we cover them extensively,
but the following algorithms will all be implemented with quantum circuits so
having some knowledge is requisite. Quantum circuits extend classical circuits
in the same way QTMs extend the classical turing machines. Anything that can
be done with the quantum circuit model can also be replicated with a QTM.
Like the classical bit, the qubit is used to store and communicate information.
While the classical bits may be comprised of 0’s and 1’s, the qubit is a super-
position of both. This is represented as 2-d vectors, ( 01 ) or (

1
0 ), with the former

describing an excited state describing the ground state of electrons. Then, two
qubits can be represented as a 4-row vector, and so on. The principle of super-
position, which states that if a quantum system has two states, then it can be in
any linear combination of the two states, a( 01 ) + b( 10 ), as long as the norm of a
and b add up to 1. The inbetweeness of this allows us to define the probability
that the electron will enter either the excited state or ground state fully, which
is the foundation for all quantum optimizations.

Another essential aspect of the quantum circuit model are gates. Gates
are manipulations on qubits that transform them from one state to another.
This is represented through square unitary matricies, and the transformation
via matrix multiplication. A quantum gate that transforms n qubits is called
a controlled gate and has dimensions 2nx2n. Here are a few gates. Identity:[
0 1
1 0

]
NOT Gate:

[
1 0
0 1

]
SWAP Gate(swaps two qubits):


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


4.2 Shor’s Algorithm

Perhaps the most famous example of a quantum algorithm is Shor’s algorithm.
Shor’s algorithm is used for finding the prime factors of integers, and takes
polynomial time on a QTM. Specifically, it takes O(logN) time to factor N ,
which is exponentially faster than the known classical method to factor. Shor’s
algorithm is composed of two parts, a part that can be performed on a classical
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turing machine and a part that utilizes a QTM. We will first show a classical
implementation of Shor’s algorithm, then show where a QTM can improve the
runtime.

4.2.1 Classical Implementation

Let’s say we want to factor N . Then we choose some k between 1 and N and
we find gcd(k,N). This can be done via the Euclidian algorithm. If the gcd is
not 1, then whatever the gcd is is a factor of N. However, if it is 1, then we want
to find ordNk, or the smallest positive integer p such that kp ≡ 1 mod N. This
is because then kp − 1 ≡ 0 mod N and is then a factor of N. Finding the order
can be accomplished through testing factors of ϕ(N) and testing using binary
exponentiation. Now that we have a value of p, we perform a few checks. If it is
odd, we go back to finding a different value of k, and if it is even, we continue.
Else, if either a

p
2 − 1 or a

p
2 + 1 divides N, we continue. If all of these checks

pass, a factor of N will be gcd(a
p
2 − 1, N).

4.2.2 Quantum Optimizations

Most of this process can be performed quite efficiently on a classical turing
machine because of the euclidean algorithm and binary exponentiation. How-
ever, the process of finding ordNk can be optimized with a QTM with quantum
Fourier transform. Like the discrete Fourier transform, the quantum Fourier
transform helps approximate periodic functions, which can be utilized if we
define f(x) = ax and try to find p such that f(x) = f(x+ p).

4.2.3 Quantum Fourier Transform

Like the classical Fourier transform, the quantum Fourier transform decomposes
the function into quantum states and then into a superposition of sinusoidal
waves at different frequencies. Essentially, the quantum Fourier transform pro-
vides a way of expressing a quantum state as a superposition of sinusoidal waves
at different frequencies.

4.3 Grover’s algorithm

Grover’s algorithm provides a faster method to search an unsorted and unstruc-
tured database. Normally, this search will take O(n) time to find a certain
element, but Grover’s algorithm speeds this up quadratically to provide a run-
time of O(

√
N). This runtime has been proved (even before Grover’s algorithm

was discovered) to be the lowest runtime possible for searching on an unstruc-
tured database. Grover’s algorithm makes use of the concept of quantum super-
position, a quantum turing machine can be in multiple states simultaneously,
allowing it to check multiple elements.
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Grover’s algorithm utilizes a quantum oracle, which is essentially a unitary
matrix that applies an operation to a given quantum state and transforms that
state. In Grover’s algorithm’s case, the oracle is used to encode information
about desired element in the database. The oracle is then applied multiple
times to the tape along with other quantum operations in order to zero in on
the position of the desired element.

4.3.1 Amplitude Amplification Trick

The amplitude amplification trick is a technique used in quantum computing
to amplify the amplitude (or probability) of a desired quantum state. It is the
bread and butter of how QTMs are able to speed up runtimes of certain tasks
by such a large margin. This was shown in Grover’s algorithm by the usage of
an oracle to gain more information about the desired element and narrow down
its position. In general this means manipulating the amplitudes of the different
quantum states in a quantum system, such as creation of a superposition of all
possible states, or the application of a quantum measurement that ”collapses”
the superposition into a single state.

4.4 Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm was specifically designed to show a difference be-
tween quantum classical complexity classes. The problem is as follows:

Given an oracle that implements f : 0, 1n → 0, 1, and that the function is
either constant(either 0 or 1 on all outputs) or balanced(half of the outputs

are 0s), determine whether the function is balanced or constant.

4.4.1 Classical Solution

For a classical turing machine or another classical system of computation, the
runtime is exponential. 2n−1 + 1 comparisons are necessary to check if a string
is balanced if the same output is given for every input tried. Since there are 2n

possible strings, we need to check 1 more in order to determine if it is balanced
or constant.

4.4.2 Quantum Solution

Using an oracle, this problem can be solved with a single query. The oracle
used here is the same unitary matrix as the one used in Grover’s algorithm.
Taking advantage of the amplitude amplification trick, Deutsch-Joza’s solution
is able to apply this oracle once and search the space completely for any differing
outputs.
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