
The Word Problem for Groups

Nate Brown

December 2022

1 Motivation

Apparently, computation shows up everywhere, even in group theory. One way to describe groups is
to use a presentation, a set of generators and some rules for manipulating them. The word problem
for groups described in this way is to determine whether two words, each some series of generators
multiplied together, are equivalent. It turns out that this problem is unsolvable, due to the fact that
some groups can encode a Turing machine.

This problem was worked on over the course of several years.

1911: Denn [4] proposed the word problem for groups.

1914: Thue [10] introduced effectively the word problem for semigroups.

1930s: Turing [11] established the existence of an unsolvable problem.

1947: Post [8] and Markov [5] independently showed that the word problem for semigroups is unsolvable.

1955: Boone [1] and Novikov [7] independently proved that the word problem for groups is unsolvable.

Post [8] directly encodes a Turing machine in a semigroup presentation and proves that the word
problem for semigroups is unsolvable. Boone [1] proved that the word problem for groups was unsolv-
able as well with a new construction based off of Post’s. Later, Britton [2] simplified this proof. The
proof we will be covering is adapted from that and presented in Miller [6].

2 Background

Definition (Group). A group is a set S and an operation ⊙ : S × S → S that satisfies:

• Closure: for a, b ∈ S, a⊙ b ∈ S.

• Identity: there exists i ∈ S such that for a ∈ S, a⊙ i = i⊙ a = a.

• Inverses: for a ∈ S, there exists b ∈ S such that a⊙ b = b⊙ a = i.

• Associativity: for a, b, c ∈ S, (a⊙ b)⊙ c = a⊙ (b⊙ c).

One example of a group is addition over the integers, another is the set of actions on a Rubik’s
cube where the operation is combining the two actions sequentially. Groups are often written with
multiplication as the operation – ab rather than a⊙ b.

Definition (Semigroup). A semigroup is like a group but it doesn’t require inverses or an identity.

Some semigroups that aren’t groups are: the positive integers, the reals with multiplication, the
integers with multiplication, and strings of characters with concatenation.

Definition (Subgroup & subsemigroup). A subgroup of a group is another group that shares the
same operation and has a subset of the set. Similarly, a subsemigroup of a semigroup is another
semigroup that shares the same operation and has a subset of the set.

1

Examples of subgroups include the even integers (which is a subgroup of the integers) and actions
on the Rubik’s cube that use only double turns (which is a subgroup of the Rubik’s cube group).
Similarly, examples of subsemigroups include the positive even integers (which is a subsemigroup of
the positive integers) and the strings made from only "q", "A", and "!" (which is a subsemigroup of
all strings).

Definition (Quotient Semigroup). A quotient semigroup is a semigroup of partition S′ such that
for all a, b ∈ S where a ∈ A ∈ S′ and b ∈ B ∈ S′, A⊙′ B is the partition in S′ that contains a⊙ b.

Definition (Group Generators). A subset S of a group G generates G if all elements of G can be
constructed with the elements of S and their inverses. The definition for semigroups is similar.

For example, {"a", "A", "!"} generate the semigroup of strings mentioned above. {1} generates
the group of integers.

Definition (Group Presentation). A group presentation is a pair of sets: the set of generators S
and a set of relations R. It is commonly written as ⟨S | R⟩. The resulting group is the quotient of
the free group generated by S and the equivalence relation generated by the transitive and symmetric
closure of R and the group axioms.

Informally, the corresponding group is the largest group that is generated by the generators S but
still satisfies all constraints imposed by R. For example, the Klein-4 group is ⟨a, b | ab = ba, aa =
1, bb = 1⟩.

3 The Word Problem

Definition (The Word Problem). The word problem for a group G is the question of whether two
words (of the generators) A and B represent the same element of the group.

This is easy for the presentation above, more complicated for some groups, and, in some cases,
impossible.

4 Turing Machines and Semigroups

To see why, it is easiest to start with a similar problem for semigroups. Semigroups are like groups,
but they do not need inverses or an identity.

Post [8] directly encodes a Turing machine in a semigroup presentation and proves that the word
problem for semigroups is unsolvable. The following is a modification of Post’s construction:

Definition (Post’s γ(T)). For the Turing machine T = (Q,Σ,Γ, δ, q0,⊔, qf , qr), let γ(T) be the semi-
group with the presentation

γ(T) = ⟨b, ξ,Γ, Q | R(T)⟩

where the relations R(T) are, for every q ∈ Q \ qf , qr and s, x ∈ Γ,

qsx = s′q′x if δ(q, s) = (q′, s′, R)

qsb = s′q′ ⊔ b if δ(q, s) = (q′, s′, R)

xqs = q′xs′ if δ(q, s) = (q′, s′, L)

qfx = qf qrx = qr

xqfb = qfb xqrb = qrb

bqfb = ξ bqrb = ξ

q, s, and x do what one would expect: q represents T ’s state, s represents the tape symbol the
head is over, and x is a wildcard symbol. The generators b and ξ represent the boundary of the tape
(creating blanks on the right if necessary) and halting respectively.

Consider the following Turing machine, that accepts a string composed of (and) if and only if the
parentheses match.

2

q0 q1 q2
(q1 [R q1 (R q1 / R
) qr − − q2 / L − − −
/ q0 / R q1 / R q2 / L
⊔ qf − − qr − − − − −
[− − − − − − q0 / R

γ(T) mimics T on the input () as follows:

bq0()b = b[q1)b

= bq2[/b

= b/q0/b

= b//q0 ⊔ b

= b// ⊔ qf ⊔ b

= b// ⊔ qfb

= b//qfb

= b/qfb

= bqfb

= ξ

Lemma (Post). bq0wb ≡ ξ in γ(T) if and only if T halts on w ∈ Σ∗.

Proof. It is pretty easy to show that any T can be simulated in γ(T). Each step has exactly one
corresponding relation, including any that need to extend the tape. Thus, if T transitions to state qf or
qr, then bq0wb = bxqyb for q ∈ {qf , qr} and x, y ∈ Σ∗. By the last 6 relations, bxqyb = bxqb = bqb = ξ.

For the other way, we will first introduce the idea that the relations have a direction. All relations
above are written in the forward direction (e.g. q0() → [q0) is forward.) The opposite way will be
considered as the backward direction.

Note that every word of the form bxqyb where q ∈ Q and x, y ∈ Σ∗ has a unique forward relation.
To show this, we first consider that all relations require an interaction with some element of Q. Thus,
we first filter the rules for the cases q = qf and q = qr. If so, only the corresponding three rules can
apply forward (Note that qf and qr have been explicitly excluded from the first three rule patterns.)
We can then filter this to only 1 rule by checking the surroundings of q for bs.

For the case where q ∈ Q \ {qf , qr}, the first three rule patterns could apply. We now filter this by
taking s and seeing what we get from δ(q, s). If T goes left, we are left with exactly one rule, as the
rule pattern, q, s, q′, s′, and even x1 can all be pinned down. If T goes right, then we first have to
check for a b to the right and everything can be pinned down as before.

Given that there is only one direction forward and that all relations preserve the form bxqyb (or
just ξ), if a relation is applied backward to a string, then the resulting string’s unique forward relation
must return to the original string. We know that each string of the from bxqyb has a unique forward
path, and we now know that going backward only extends that unique forward path. Using the fact
that no backward relation produces ξ, a sting bxqyb = ξ if and only if ξ is reached in its unique forward
path.

Thus, bq0wb = ξ if and only if T halts on w ∈ Σ∗.

With this lemma, the word problem for semigroups is unsolvable because the halting problem can
be reduced to it.

Post’s construction for semigroups does not work for groups. This is because the relations intro-
duced restrict the group too much, and unwanted relations can be derived with the full group axioms.
For example qfx = qf can be left-multiplied by q−1

f to get x = 1. Since x can be any symbol in Γ, this
results in the entirety of any tape being 1.

1Unless b is to the left. I have no clue what T , let alone γ(T), does in that case.

3

5 Turing Machines and Groups

Boone [1] proved that the word problem for groups was unsolvable as well with a new construction
based off of Post’s. Later, Britton [2] simplified this proof. The proof we will be covering is adapted
from that and presented in Miller [6].

The construction of Boone’s group B(T) uses Post’s γ(T), with new symbols and conventions:

• k is added to commute with halting pairs of Turing machines. This is used later to help confirm
that the group doesn’t collapse in unwanted ways.

• The ris are added to keep track of the used rules, making steps reversible.

• x is added solely to keep the ris from returning to the Turing machine or commuting with each
other.

• t is put in between the Turing machines to allow the ris and xs between the TMs to let k
commute.

Definition (Boone’s B(T)). Let B(T) be the group with the presentation

B(T) = ⟨b, ξ,Γ, Q, ri, x, t, k | RB(T)⟩

where RB(T) has the following relations:

xsi = six
2 (1)

risj = sjxrix (2)

r−1
i F#

i qi1Giri = H#
i qi2Ki for each of i rules in γ(T) (3)

rit = tri (4)

xt = tx (5)

rik = kri (6)

xk = kx (7)

(ξ−1tξ)k = k(ξ−1tξ) (8)

The notation F# for a word F means the inversion of each generator in F but the order remains
the same (so not the same as F−1). We’ll define a word of B(T) as special if it’s of the form X#qiY
for X,Y ∈ (Γ ∪ {b})∗.

Lemma (Boone). For a special word Σ = X#qiY ,

k(Σ−1tΣ) = (Σ−1tΣ)k

in B(T) iff XqiY = ξ in γ(T).

Proof. Starting with sufficiency: assuming that, in γ(T), XqiY = ξ, we can apply the derivation in
γ(T) to rewrite Σ = LξR for L,R ∈ {x, ri}∗. Then,

k(Σ−1tΣ) = k(R−1ξ−1L−1tLξR)

= k(R−1ξ−1tξR)

= R−1k(ξ−1tξ)R

= R−1(ξ−1tξ)kR

= (R−1ξ−1tξR)k

= (R−1ξ−1L−1tLξR)k

= (Σ−1tΣ)k

For necessity, first we need some machinery.

4

Definition (HNN Extension). Let G be a group with presentation ⟨S | R⟩, and α : H → K be an
isomorphism between two subgroups of G. Let t be a new symbol not in S, and define

G∗α =
〈
S, t | R, tht−1 = α(h),∀h ∈ H

〉
.

The group G∗α is called the HNN extension of G relative to α. The new symbol t is called the
stable letter.

There are two important properties of these extensions that we’ll need in this sketch:

Lemma (Higman–Neumann–Neumann). G is naturally a subgroup of G∗α using the generators from
G’s presentation.

Lemma (Britton). If w is a word of G∗α in which t or t−1 appears and if w = 1, then w contains
either a subword of the form t−1at or of the form tα(a)t−1 and so the relations of the form t−1at = α(a)
can be used to perform a t-pinch and reduce the number of t-symbols in w.

Boone’s construction allows a tower of groups:

B0 = ⟨s | b⟩
B1 = ⟨s, b, x | rule (1)⟩

B1 ×Q

B2 = ⟨s, b, x | rules (1) through (3)⟩
B3 = ⟨s, b, x | rules (1) through (5)⟩
B

Each is an HNN extension of the one above, with also B2 is also an HNN extension of B1.
Now we get to use it for B(T). Starting with k(Σ−1tΣ)k−1(Σ−1t−1Σ) =B 1, we can use k as a

stable letter to get

k(Σ−1tΣ)k−1(Σ−1t−1Σ) =B 1

W (Σ−1t−1Σ) =B3
1 pinch k, giving W ∈ {ri, x, ξ−1tξ}∗

W =B3 Σ−1tΣ

W1 =B3
Σ−1tΣ pinch t out of W leaving W1 with only one t

So now W1 looks like R−1
0 ξ−1tξR where R,R0 ∈ {ri, x}∗, and we can pinch again:

W1 =B3 Σ−1tΣ

R−1
0 ξ−1tξR =B3

Σ−1tΣ

Σ−1t−1ΣR−1
0 ξ−1tξR =B3

1

Σ−1LξR =B3 1 pinch t, mapping ΣR−1
0 ξ−1 to some L ∈ B2

Σ =B2 LξR

This gives us X#ξY R−1ξ−1 =B2
L, so X#ξY =B2

LξR, which looks suddenly a lot like we’re back
in Post’s γ(T) construction but with these extra L and R. Fortunately, L and R give us a list of rules
(in the ri) that can be used to perform the derivation in γ(T), giving the equivalence we need.

Given a Turing machine TU with an unsolvable halting problem, the word problem for B(TU) is
unsolvable because the equivalence

k
(
(b#q0Wb)−1t(b#q0Wb)

)
=B(TU)

(
(b#q0Wb)−1t(b#q0Wb)

)
k

is true if and only if
bq0Wb =γ(TU) ξ

which is true if and only if TU halts on W .
Thus,

Theorem (Boone–Novikov). There exists a group with an unsolvable word problem.

5

References

[1] Boone, W. W. The word problem. Annals of mathematics (1959), 207–265.

[2] Britton, J. L. The word problem. Annals of Mathematics (1963), 16–32.

[3] Cravitz, W. An introduction to the word problem for groups. 2021.

[4] Dehn, M. Über unendliche diskontinuierliche gruppen. Mathematische Annalen 71, 1 (1911),
116–144.

[5] Markov, A. On the impossibility of certain algorithms in the theory of associative systems.
Doklady Akademii Nauk SSSR. New Series 55 (1947), 587–590.

[6] Miller, C. F. Turing machines to word problems. In Turing’s Legacy: Developments from
Turing’s ideas in logic, R. Downey, Ed. Cambridge University Press, 2014, pp. 329–385.

[7] Novikov, P. S. On the algorithmic unsolvability of the word problem in group theory. Trudy
Matematicheskogo Instituta imeni VA Steklova 44 (1955), 3–143. translated as American Math-
ematical Society Translations. Second Series, vol. 9 (1958), pp. 1–122.

[8] Post, E. L. Recursive unsolvability of a problem of thue. The Journal of Symbolic Logic 12, 1
(1947), 1–11.

[9] Power, J. F. Thue’s 1914 paper: a translation. arXiv preprint arXiv:1308.5858 (2013).

[10] Thue, A. Probleme über veränderungen von zeichenreihen nach gegebenen regeln. Skrifter utgit
av Videnskapsselskapet i Kristiania, I. Mathematisk-naturvidenskabelig klasse 10 (1914).

[11] Turing, A. M., et al. On computable numbers, with an application to the entscheidungsprob-
lem. J. of Math 58 (1936), 345–363.

6

