
CLASS BPP IN PROBABILISTIC ALGORITHMS

JOSHUA KOO

Abstract. In this article, we introduce the concept of probabilistic algorithms and the
amplification lemma. Furthermore, we will introduce the class BPP and prove that the
algorithm PRIMES is in it.

1. Introduction

For centuries, mathematicians have been trying to find an algorithm that would success-
fully determine the primality of a number. They continued to focus on utilizing deterministic
algorithms, until in 1997 Robert M. Solovay, a professor at the University of Berkeley, and
Volker Strassen, a professor at the University of Konstanz, discovered a working method by
using probabilistic algorithms. So what exactly are probabilistic algorithms, and how can
we use them?

A probabilistic algorithm works just like how it sounds. It’s an algorithm where its
behavior is determined by randomness. We can better think of it as coin flips, where the
result of the flip, either heads or tails, will decide whether the algorithm will do one thing or
another. So how can this ever be better than pure calculation? This is because calculating
the answer may take too much time or the polynomial solution is just too complicated.

We now define probabilistic Turing machines. The general idea of probabilistic Turing
machines is that they are pretty much identical to nondeterministic Turing machines but
with just one difference: while in a nondeterministic Turing machine we ask does there exists
a sequence of steps that leads the machine to accept, in a probabilistic Turing machine we
ask how big is the fraction of selections that lead the machine to accept. We will not be
going into detail about the definition, but if interested here is Michael Sipser’s definition of
a probabilistic Turing machine.

Definition 1.1. A probabilistic Turing machine M is a type of nondeterministic Turing ma-
chine in which each nondeterministic step is called a coin-flip step and has two legal next
moves. We assign a probability to each branch b of M ’s computation on input w as follows.
Define the probability of branch b to be

Pr[b] = 2−k

where k is the number of coin-flip steps that occur on branch b. Define the probability that
M accepts w to be

Pr[M accepts w] =
∑

b is an accepting branch

Pr[b] = 1

In this paper, we will be focusing on the class BPP, defined as follows.

Definition 1.2. BPP is the class of languages that can be determined by Turing machines
that run in probabilistic polynomial time, with an error probability of 1

3
.

1

Note that the error probability of 1
3
does not actually matter as long as the constant is

strictly between 0 and 1
2
. This is called the amplification lemma, which is proved later in the

paper. Finally, this paper will ultimately prove that the algorithm PRIMES in the class
BPP.

2. Amplification Lemma

As stated in the introduction, we will first go over the amplification lemma, which is
defined as follows:

Lemma 1. There exists a probabilistic polynomial time Turing machine M2 with an error
probability of 2−p(n), where p(n) is a polynomial and ϵ is a fixed constant strictly between 0
and 1

2
, such that M2 is equivalent to a probabilistic polynomial time Turing machine M1 that

operates with error probability ϵ.

Proof. We start by considering the behavior of M2 on any input x. M2 first calculates a
value for k, which is determined by the desired error probability and the error probability
of M1. M2 then runs 2k independent simulations of M1 on input x. If the majority of these
simulations accept, M2 will accept; otherwise, M2 will reject.

Next, we consider the probability that M2 gives the wrong answer on an input x. Let S
be any sequence of results that M2 might obtain in stage 2. Let PS be the probability that
M2 obtains S. If S has c correct results and w wrong results, where c + w = 2k, then if
c ≤ w and M2 obtains S, M2 will output incorrectly. We call such an S a bad sequence.

We can then bound the probability of obtaining a bad sequence S by PS ≤ ϵw · (1− ϵ)c

This is at most ϵw · (1− ϵ)c because ϵx · (1− ϵ)(2k−x) is maximized when x = k. Furthermore,
ϵk · (1− ϵ)k is at most ϵk · (1− ϵ)k because k ≤ w and ϵ < 1

2
.

Summing PS for all bad sequences S gives us the probability that M2 outputs incorrectly
on input x. There are at most 2(2k) bad sequences because 22k is the number of all sequences.
Therefore, the probability that M2 outputs incorrectly on input x is at most 22k · ϵk · (1− ϵ)k.

We can then choose a specific value for k such that M2’s error probability is bounded by
2−p(n) for any polynomial p(n). To do this, we let α = −log2(4ϵ(1 − ϵ)) and choose k ≥ t

α
.

This gives us an error probability of 2−p(n) within polynomial time, as desired. □

Thus, the 1
3
does not actually matter. As stated in the introduction, as we will ultimately

be proving that the algorithm PRIMES is in the class BPP , we’ll now first go over a few
necessary definitions and theorems.

3. PRIMES and Class BPP

Definition 3.1. A prime number is a positive integer greater than 1 that has no positive
integer divisors other than 1 and itself.

Definition 3.2. A composite number is a positive integer greater than 1 that has at least
one positive integer divisor other than 1 and itself. In other words, a composite number is a
positive integer that is not a prime number.

Definition 3.3. Two integers a and b are said to be equivalent modulo p, denoted a ≡
b (mod p), if they leave the same remainder when divided by p. In other words, if p is a
divisor of a− b, then a and b are equivalent modulo p. For example, consider the integers 8
and 11. If p = 3, then 8 ≡ 11 (mod 3) because both 8 and 11 leave a remainder of 2 when

2

divided by 3. On the other hand, if p = 4, then 8 ≡ 0 (mod 4) and 11 ≡ 3 (mod 4), so 8
and 11 are not equivalent modulo 4.

Note that as of now a polynomial-time solution for testing whether a number is prime or
composite, called the AKS primality test, does exist, but it is far too complicated which is
why we are going over the probabilistic approach. If you’d like to read more about the AKS
primality test, follow this link: AKS Primality Test (Linked). Exponential solutions have
been around for a while, such as checking if any integer less than the number is a factor.
An even more optimized solution is to check integers up to

√
n. The time complexity of this

may seem to be O(n), but note that the size of a number is exponential as it grows. With
the utter importance of primality testing, the first proof of the probabilistic algorithm was
discovered by the 1970s. To go over the proof, we will first define Fermat’s Little Theorem,
which is the very base of the probabilistic primality test.

Definition 3.4. Fermat’s Little Theorem states that for any prime number p and any integer
a such that gcd(a, p) = 1, then ap−1 ≡ 1 (mod p).

We will not be going over a detailed proof of the theorem, but here is an official proof
from Art of Problem Solving using induction:

Proof. The most straightforward way to prove this theorem is by applying the induction
principle. We fix p as a prime number. The base case, 1p ≡ 1 (mod p), is obviously true.
Suppose the statement ap ≡ a (mod p) is true. Then, by the Binomial Theorem,

(a+ 1)p = ap +

(
p

1

)
ap−1 +

(
p

2

)
ap−2 + · · ·+

(
p

p− 1

)
a+ 1.

Note that p divides into any binomial coefficient of the form
(
p
k

)
for 1 ≤ k ≤ p − 1. This

follows by the definition of the binomial coefficient as
(
p
k

)
= p!

k!(p−k)!
; since p is prime, then p

divides the numerator, but not the denominator.
Taken mod p, all of the middle terms disappear, and we end up with (a+1)p ≡ ap +1

(mod p). Since we also know that ap ≡ a (mod p), then (a + 1)p ≡ a + 1 (mod p), as
desired. □

We will also need to know the Chinese Remainder Theorem and the Binomial Theorem,
which are defined as follows.

Definition 3.5. The Chinese Remainder Theorem states that given a system of simultaneous
congruences of the form:

x ≡ a1 (mod p1)

x ≡ a2 (mod p2)

...

x ≡ an (mod pn)

where m1,m2, ...,mn are pairwise relatively prime (meaning they have no common factors
other than 1), then there exists a unique solution x (mod M) for this system, where M is
the product of all the moduli m1,m2, ...,mn.

3

http://www.cs.tau.ac.il/~amnon/Classes/2019-Derandomization/Lectures/Lecture7-AKS-All.pdf

The following is a proof of the theorem by Stanford University (note that the proofs of
most of these theorems are from basic number theory, which is why we are not going through
them in detail and are instead using references) for two congruences, x ≡ a (mod p) and
x ≡ b (mod q). Note that this can trivially be expanded to more congruences.

Proof. Let p1 ≡ p−1 (mod q) and q1 ≡ q−1 (mod p). These must exist since p, q are coprime.
Then we claim that if y is an integer such that

y ≡ aqq1 + bpp1 (mod pq)

then y satisfies both equations:

Modulo p, we have y ≡ aqq1 ≡ a (mod p) since qq1 ≡ 1 (mod p). Similarly, y ≡ b (mod q).
Thus, y is a solution for x. It remains to show that no other solutions exist modulo pq. If
z ≡ a (mod p) then z − y is a multiple of p. If z ≡ b (mod q) as well, then z − y is also a
multiple of q. Since p and q are coprime, this implies z − y is a multiple of pq, hence z ≡ y
(mod pq) □

Theorem 2. The Binomial Theorem states that for numbers x, y and non-negative integer
n,

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk

Proof. The easiest way to go about proving this theorem is to induct on n. The base case,
where n = 0, is obviously true. Now, suppose the theorem holds for some non-negative
integer n. We will now show that it holds for n + 1. The LHS of the equation becomes
(x + y)n+1 = (x + y)(x + y)n, and the RHS becomes

∑n+1
k=0

(
n+1
k

)
x(n+1)−kyk. Expanding the

LHS, we get: (x + y)(x + y)n = x(x + y)n + y(x + y)n. Using the induction hypothesis, we
can rewrite this as:

x
n∑

k=0

(
n

k

)
xn−kyk + y

n∑
k=0

(
n

k

)
xn−kyk

This can be simplified as:
n∑

k=0

(
n

k

)
xn−k+1yk +

n∑
k=0

(
n

k

)
xn−kyk+1

Combining the two sums, we get:
n+1∑
k=0

[(
n

k

)
+

(
n

k − 1

)]
xn−k+1yk

Using the identity
(
n
k

)
+
(

n
k−1

)
=

(
n+1
k

)
, we can rewrite this as:

∑n+1
k=0

(
n+1
k

)
xn−k+1yk. This is

exactly the right side of the equation, so we have shown that the theorem holds for n + 1.
By induction, the theorem holds for all non-negative integers n, as desired. □

Using Fermat’s Little Theorem to test whether a number is prime is called the Fermat
Test. That is, for some integer p, it will pass the Fermat Test for value a if ap−1 ≡ 1
(mod p). Thus, note that a prime number will always pass this test for all values of a such
that a ∈ Z, a > 0, and a < p. Is this enough to work as a correct primality test? Not

4

quite. This is due to the existence of Carmichael numbers, numbers that are composite but
look prime. By ”look prime”, this means that it passes the Fermat Test for all values of a.
Though, note that Carmichael numbers are very rare, with the first few of them being very
large (and growing fast):

561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, · · ·

Thus, we will first introduce the algorithm PSEUDOPRIME, which is a probabilis-
tic algorithm that properly classifies between prime and composite with the exception of
Carmichael numbers (note that a pseudoprime number is a number that passes all Fermat
Tests). For a number p, the time complexity of checking whether it passes through all possi-
ble Fermat Tests would clearly be exponential. Therefore, we will use the fact that, for some
number p, if it is not pseudoprime, it will always fail on at least half of its Fermat tests. Here
is a basic rundown of how the algorithm / Turing machine works: For input p and random
numbers a1, . . . , ak, where ai > 0, ai ∈ Z, and ai < p, compute the values of ap−1

i (mod p).
If every single one of the values is 1, then accept. If not, then reject.

And so note that in the case where p is not a pseudoprime, the probability that it will
pass all k ais is 2−k. Now, to change this into a probabilistic algorithm that takes care of
the Carmichael numbers, we will use the following principle: For any prime number p,

√
1

(mod p) is always equivalent to 1 or -1, while for a composite number c,
√
1 (mod c) always

has at least four solutions. The proof of this is quite trivial by using the Chinese Remainder
Theorem. Using this, we define the Turing machine PRIMES as follows (from Michael
Sipser but edited):

PRIMES = ”On input p:

(1) If p = 2, accept. Otherwise, if p is even, then reject.
(2) Randomly choose a1, . . . ak such that ai > 0, ai ∈ Z, and ai < p.
(3) For each i from 1 to k:
(4) Compute ap−1

i (mod p). Reject if not equal to 1.
(5) Let p− 1 = s · 2l, where s is odd.

(6) Compute the sequence as·2
0

i , . . . as·2
l

i (mod p).
(7) If at least one element of the sequence is not equal to 1, find the last such

element and reject if the element is not equal to -1.
(8) Accept.

Note that k sets the maximum error probability to 2−k. From here, we will prove the
following two lemmas to show that the algorithm works. We will also only be looking at odd
numbers from now on, as even numbers will clearly be accounted for in the very first step of
the algorithm.

Lemma 3. If p is an odd prime number, Pr[PRIMES accepts p] = 1.

Proof. Looking at the algorithm, all we have to show is that p will never be rejected if it is
prime. The only two steps that have the possibility of rejection are steps 4 and 7. First, if
we look at step 4, if p, a prime number, were to be rejected then for some ai, a

p−1
i (mod p)

would have to not equal 1. Referring back to Fermat’s Little Theorem, this would mean that
p is composite, which is a contradiction. Thus, p cannot be rejected at step 4. Second, if p

5

were to be rejected at step 7 then there would have to exist an integer x such that x > 0,
and x < p, where x2 ≡ 1 (mod p) and x ̸≡ ±1 (mod p). With some simple algebra:

b2 − 1 = (b− 1)(b+ 1) ≡ 0 (mod p)

This means that (b−1)(b+1) is a multiple of p. Since x ̸≡ ±1 (mod p), 0 < b−1, b+1 < p.
This is a contradiction since p must be composite if some multiple of it can be the product
of numbers smaller p. Thus, a prime p cannot be rejected at step 7, as desired. □

Lemma 4. If p is an odd composite number, Pr[PRIMES accepts p] ≤ 2−k.

Proof. This proof has two parts, and we will be going more over the second one. To go
into more detail about the first part, read page 402 in Michael Sipser’s Introduction to the
Theory of Computation. To show that the lemma is true, we must prove that for every
randomly selected a, such that p is not rejected, there must exist a unique randomly selected
areject such that p is rejected. There are two cases to look at. The first one is when p is the
product of two relatively prime numbers, while the second one is when p is the power of a
prime. Though we will not be going over the first case, the key idea is that we can use the
Chinese Remainder Theorem to find an a such that p gets rejected. For the second case, let
p = qe, such that q is prime and e is greater than 1. To find a possible a such that p gets
rejected, let us set n = 1 + qe−1. Using the Binomial Theorem, if we expand np we get:

1 + p · qe−1 + . . . ≡ 1 (mod p)

This shows us that n is a possible areject that causes p to be rejected in step 4 since if it were
not, then by Fermat’s Little Theorem, np−1 ≡ 1 (mod ()p) leads to np ≡ n ̸≡ 1 (mod p),
which is a contradiction. Thus, let m be a possible a such that p does not get rejected.
Then, we claim that nm (mod p) is a unique areject such that p gets rejected. To do so, let
m1 and m2 be distinct possible as. If nm1 (mod p) = nm2 (mod p), then

m1 = m1 · n · np−1 (mod p) = m2 · n · np−1 (mod p) = m2,

which is a contradiction since we assumed m1 and m2 to be distinct. Thus, there will always
be at least as many possible arejects as there are as, as desired. □

Combining the two lemmas is clearly enough to show that PRIMES ∈BPP.

4. Additional Resources

Note that there are now many different kinds of proofs for showing PRIMES ∈BPP.
For instance, here is a much more advanced proof from the book Computational Complexity:
A Modern Approach written by Sanjeev Arora and Boaz Barak (with a few grammar edits):

Proof. For every number N, and A ∈ [N − 1], define:

QRN(A) =

0 gcd(A,N) ̸= 1

+1 A is a quadratic residue modulo N

−1 otherwise

We use the following facts that can be proven using elementary number theory:

(1) For every odd prime N and A ∈ [N − 1], QRN(A) = A(N−1)/2 (mod N).
6

(2) For every odd N,A, define the Jacobi symbol (N
A
) as

∑k
i=1QRPi

(A) where P1 . . . , Pk

are all the (not necessarily distinct) prime factors of N (i.e., N =
∑k

i=1 Pi). Then,
the Jacobi symbol is computable in time O(logA · logN).

(3) For every odd composite N , |{A ∈ [N − 1] : gcd(N,A) = 1 and (N
A
) = A(N−1)/2}| ≤

1
2
|{A ∈ [N − 1] : gcd(N,A) = 1}|

Together these facts imply a simple algorithm for testing the primality of N (which we can
assume without loss of generality is odd): choose a random 1 ≤ A < N, if gcd(N,A) > 1
or (N

A
) ̸= A(N−1)/2 (mod N) then output ”composite”, otherwise output ”prime”. This

algorithm will always output “prime” if N is prime, but if N is composite it will output
“composite” with a probability of at least 1

2
(Of course, this probability can be amplified by

repeating the test a constant number of times). □

In terms of probabilistic algorithms and classes, note that there are a lot more findings in
the field than just the algorithm PRIMES and class BPP. For instance, you could explore
the classes RL,RP, and ZPP , as well as the algorithm EQROBP .

References

[1] Arora, Sanjeev, and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge, UK:
Cambridge University Press, 2009.

[2] Sipser, Michael. Introduction to the Theory of Computation. 3rd ed. Boston, MA: Thomson Course
Technology, 2013.

[3] Ta-Shma, Amnon. ”Lecture 7: AKS.” Tel Aviv University, Tel Aviv, Israel, 2019.
[4] ”Chinese Remainder Theorem.” Stanford University, crypto.stanford.edu/pbc/notes/numbertheory/crt.html.
[5] ”Fermat’s Little Theorem.” AoPS, artofproblemsolving.com/wiki/index.php/Fermat%27s Little Theorem.

7

	1. Introduction
	2. Amplification Lemma
	3. PRIMES and Class BPP
	4. Additional Resources
	References

