
Interactive Proof Systems

JONATHAN XUE

ABSTRACT. Interactive proof systems are a method of using two agents,
a prover and a verifier, to determine the truth of a certain statement. We
introduce the concept of probabilistic and deterministic verifiers for such systems
and evaluate them on metrics of completeness and soundness. Finally, we use
an interactive proof system to show that graphs are non-isomorphic and finish
with the concept of public coins.

1 Introduction

We begin with an informal explanation of interactive proof systems before es-
tablishing an explicit definition. To begin, we use the standard definition for a
proof in NP, which states that a proof is a sequence of symbols, such that only
provable statements have a corresponding valid sequence. For our interactive
proof system, we have two agents, a prover and a verifier. The prover attempts
to convince the verifier of the validity of a statement. The verifier attempts
to determine whether the prover’s argument definitively proves the statement’s
truth. Both prover and verifier alternate sending the other messages, which
are strings, to achieve their respective goals, until the verifier finally reaches a
conclusion as to whether the proof is sufficient or not. In their communication,
both agents have the ability to keep track of all previous messages. We formally
define a deterministic interactive proof system and its messages in the section
below.

2 Deterministic Systems

Definition 2.1 (Messages of Deterministic Interactive Proof System). Given a
prover p and a verifier v, let them be functions such that p, v : A∗ → A∗, where
A is an alphabet. Then, given a statement x ∈ A∗, we define the messages
m1, . . .m2n ∈ A∗ sent between p and v of an interactive proof system with 2n
messages to be as follows:

1

m1 = v(x)

m2 = p(x,m1)

m3 = v(x,m1,m2)

. . .

m2n−1 = v(x,m1,m2, . . . ,m2n−2)

m2n = p(x,m1,m2, . . . ,m2n−1)

(1)

After the last message sent, the verifier must either accept or reject the proof.
We denote this output of the interaction as outv⟨p, v⟩. If outv⟨p, v⟩ = 1, the
proof is accepted. Otherwise, it is rejected.

Definition 2.2 (Deterministic Interactive Proof System). A language L = A∗

has a deterministic interactive proof system if there’s a deterministic Turing
machine V that on input x,m1,m2,mk runs in polynomial time which is both
complete and sound :

(Completeness)x ∈ L =⇒ ∃P : L → L | outV ⟨P, V ⟩ = 1

(Soundness)x /∈ L =⇒ ∀P : L → L | outV ⟨P, V ⟩ = 1

Informally, completeness means that all true statements will have a valid
proof that the interactive proof system accepts, and that no false statement will
have a valid proof. For an interactive proof system to be recognized, it must be
both complete and sound.

2.1 dIP and NP Equivalence

Now that we have established a definition for deterministic interactive proof
systems, we can examine their relationship with the NP class.

Theorem 1. The class dIP that consists of all languages with a deterministic
interactive proof system is equivalent to the class NP.

Proof. By definition, every language in NP has a valid proof, and will have
a deterministic interactive proof system that consists of one message. Thus,
we only need to show that if a language L has such an interactive proof sys-
tem, then L ∈ NP. Since L has an interactive proof system, it must have
a sequence of messages m1,m2, . . . ,mk produced by the prover and verifier.
To show that these messages produce a proof, we can verify that V (x) =
m1, V (x,m1,m2) = m3, . . . V (x,m1, . . . ,mk−1) = mk. Since we know that such
a sequence is the valid basis for an interactive proof system, we can then create
a prover P such that P (x,m1) = m2, P (x,m1,m2,m3) = m4, . . . , which means
that outV ⟨P, V ⟩ = 1, and thus x ∈ L.

2

3 Probabilistic Verifiers

However, there are certain problems that cannot be proved with deterministic
interactive proof systems. For these, we turn to interactive proof systems with a
probabilistic verifier. While using a probabilistic verifier means that the system
is not entirely complete and sound, it will have a high enough probability of
success. We find that using randomness makes the system more robust, allowing
for the verifier to achieve high accuracies regardless of the prover’s methods.
For the sake of interactive proof systems with probabilistic verifiers, we redefine
completeness and soundness.

Definition 3.1 (Interactive Proof System). . If we have a language L, we say
that that (P, V) is an interactive proof system on L if:

(Completeness) ∀x ∈ L,Pr(outV ⟨P, V ⟩ = 1) ≥ 2

3

(Soundness) ∀x /∈ L,Pr(outV ⟨P, V ⟩ = 1) ≤ 1

3

where V is a Turing machine that runs in polynomial time.

We provide an example to illustrate the added utility of having a probabilistic
verifier over a deterministic one. Consider the following: Alice claims she can
distinguish between black and white socks with her eyes closed. To verify this,
Bob picks a random sock and asks Alice to distinguish it. If Bob repeats this
process 40 times and Alice is able to determine the color of the sock each time,
Bob can be fairly confident that Alice was initially telling the truth. Each time,
without any particular skill, Alice would be able to guess the correct color with
a 1

2 probability, but given the amount of trials, guessing correctly all 40 times
would be unlikely. Interactive proof systems with probabilistic verifiers employ
the same logic, where by querying the prover many times, the verifier can be
convinced of a statement. We now show the following two theorems.

Theorem 2. The class IP of all languages with an interactive proof system
will not change if a prover is allowed to be probabilistic, that is the message sent
mi is determined by a random string used by the prover.

Proof. If we have some language L, whose probabilistic prover P causes the
verifier V to accept with probability p, by producing statements based off a
random function, if we average all the probabilities of acceptance by V , we
know there is some deterministic prover P ′, which has the same probability of
acceptance as P . Thus, any language that has a deterministic proof system can
also be expressed as a languaged which has a proof system with a probabilistic
prover, and IP will remain the same.

Theorem 3. Given an interactive proof system with probabilistic verifier, we
can design a method such that given some arbitrary positive value ϵ < 1, the
probability of correctly classifying an input is greater than 1− ϵ.

3

Proof. If we run our interactive proof system some large number of times k, we
can take the majority outcome, and cause our probability of correct classification
to become arbitrarily close to 1. For a repetition of k times, the probability that
we will correctly classify an input by majority, assuming k is odd, is

1− 2⌈
k
2 ⌉ − 1

3k

. Thus, so long as 2⌈
k
2
⌉−1

3k
≤ ϵ, our condition is satisfied, and thus we are done

since we can always choose a k that satisfies the given constraint.

3.1 Proof of Graph Non-Isomorphism

We now give an example of a language not in NP that is in IP. If we use a
numbering of vertices to represent a graph, we say that two graphs G1, G2 are
isomorphic if they are the same, only with a reordering of the vertices. There is
a problem GI that given two graphs, seeks to determine if they are isomorphic.
In this proof, we show that the complement of GI, NGI, which decides whether
given two graphs if they are non-isomorphic, is in IP, but not NP.

Proof. We begin with graphs G1, G2. To show that NGI is in IP, but not NP,
it suffices to provide a interactive proof system with a probabilistic verifier and
show that it is impossible to provide such a system with a deterministic verifer.
First, we show that an IPS with a probabilistic verifier exists with the following
protocol:

V : choose i ∈ 1, 2 at random and perform a random permutation of the vertices
on Gi. Call this new graph H and send it to P
P : identify whether G1 or G2 was used to produce H. If Gj is determined to
have been used, send j to V .
V : if i = j, accept. Reject otherwise.

We know this system is completel, as for any two graphs which are non-isomorphic,
the all-knowing prover can determine which graph the permutation is derived
from. However, if the graphs are isomorphic, then the probability of selecting
which graph is 1

2 , meaning it is not sound. Given that it is impossible to create
a perfectly sound system due to the nature of the problem, we have shown that
NGI NP, and our protocol shows that NGI ∈ IP, so we are done.

4 Public Coins

So far, we have discussed proof systems with probabilistic verifiers, where the
prover cannot access the verifier’s random string. These are called private coin
proofs. We now discuss systems where the prover has full access of the verifier’s
random string, leading to the model of interactive proof systems with public
coins.

4

Definition 4.1 (Public Coin Proof). . We denote byAM, the class of languages
that can be decided by an interactive proof where the verifier’s messages consist
of sending a random string and are decided by tossing coins, whose result is
made public to the prover. Such a proof is known as a public coin proof or an
Arthur-Merlin proof.

We finish the discussion earlier about graph non-isomorphism with the fol-
lowing claim.

Theorem 4. GNI ∈ AM.

Proof. We define the set S = {H : H ≡ G1 ∪H : H ≡ G2}, where ≡ represents
isomorphism. We know by definition that H ∈ S, because it’s a permutation
of some graph G1, G2, and is thus isomorphic to one of them. If G1 ≡ G2,
then |S| = n!, where G1, G2 have n vertices. Otherwise, if G1, ̸≡ G2, then they
will share no isomorphic graphs and |S| = 2n!. Thus, now to convince the
verifier of non-isomorphism, we need only show that |S| = 2n!. By applying
the Goldwasser-Sipser Lower-Bound Protocol [3] with p = K

2k
, we need only

show that if |S| ≥ K, then the verifier will accept with greater probability than
p
2 . Previously, we’ve shown that by iterating a interactive proof system with
probabilistic verifier multiple times, we can get a higher accuracy. Since we deal
in public coins, we run through the system an arbitrary amount of times, then
accept if the fraction of acceptances was greater than 0.6p. To achieve this,
it is clear that the completeness probability must be greater than 2

3 and the
soundness probability must be less than 13, so we are done.

5 References

[1] Florian Tramer.Lecture 3: Interactive Proofs. 2019

[2] Princeton. Chapter 9: Interactive Proofs.

[3] Yale. The Goldwasser-Sipser Lower-Bound Protocol

5

