
Euler Circle Paper: Hashlife

Jerry Guo

December 18, 2022

Abstract

This paper seeks to provide an overview of the concept of hashlife, an
algorithm used for simulations of cellular automata. It explores the origin
of the algorithm as well as the mechanics behind its function.

1 The Game of Life

The game of life, created by John Horton Conway in 1970, was a cellular
automaton on a two-dimensional grid that progressed based on a fixed set of
rules, with each cell taking into account its current state, along with those of
its neighbors, in order to produce its state one step into its future. Therefore,
it is commonly termed to be a ”zero-player game”, requiring no input from a
user after the initial setup.

However, in the 1970s, there was limited computational power available. As
such, the basic method of taking every cell on the grid and checking its borders
was unsatisfactory. As such, optimizations were needed to shorten the simula-
tion time for large-scale automata. Some types of optimization methods include
detecting and skipping empty space, still lifes, oscillators, et cetera. However,
there will be a certain point where attempts to detect more objects will slow
down the speed of the code.

2 Hashlife

In 1984, Ralph William Gosper Jr. created an algorithm that greatly in-
creased the speed at which the game of life can be computed. The algorithm,
which he termed ”Hashlife”, relied on two main principles:

• Hash tables, a way to store situations that have already been processed in
a way that enables fast access.

• Macrocells, a way of dividing the grid in a way that allows computation
to proceed several steps at a time.

We will go over each of these ideas in order.

1



3 Hashlife Principles

3.1 Hash Tables

Hash tables are a type of data structure that is composed of two main el-
ements: a hash function and a bucket array. The hash function is used to
generate a number from the data. This number, the hash, is used to determine
where the data should be stored in the bucket array. A common way of doing
this is taking the hash modulo the number of buckets. The bucket array is
essentially a list of receptacles that can hold the data. When data is inserted
into the hash table, the hash function is used to generate a number, which is
used to determine which bucket the data should be stored in.

However, there is a problem associated with hashing via modulo, which is
one of the collisions: different data might be mapped to the same bucket. A way
to solve this would be to create a list in the bucket containing both pieces of data.

When data is requested from the hash table, the hash function is used again
to generate the hash of the data that was requested. This hash is then used to
quickly look up the data associated with it in the bucket array. This makes hash
tables a very efficient way to store and look up data, often having O(1) in data
lookups. In some cases involving collisions, the lookup process involves search-
ing through the list inside the bucket. However, the speed increase through data
lookups is still substantial.

3.2 Macrocells

A macrocell is a way to represent any section in the grid that is 2n by 2n,
where n is an integer such that n > 1. It utilizes a structure called a quadtree,
where the macrocell is split into four quadrants, and each quadrant is stored as
a node in a tree under the macrocell.

For example, a 4 by 4 macrocell contains four nodes of its quadrants, which,
in turn, have four nodes of its quadrants, which, in this case, would either be a
1 or a 0.

Immediately, we can see some points of optimization. one of them is that if
there is a repeat of macrocells, instead of storing the same information twice,
we can use two pointers to point toward one instance of the macrocell. As
shown below, this offers a significant decrease in the number of nodes. This
effect becomes extremely pronounced when we have a large number of stored
macrocells, as we can share its children across the same level with different
nodes.

2



Figure 1: Our original tree, with 21
nodes

Figure 2: Our new tree, with six nodes

As we can see, this greatly simplifies the space needed to store one macrocell.

Now, we can establish the ”speed of light” in the game of life, the fastest
possible speed of information transfer, to be one cell per step. Therefore. Every
time we simulate one macrocell 1 step forward, we have to remove the outer
ring of cells, as those are not necessarily accurate anymore.

A neat and useful quirk of the macrocell is that, after simulating 2n−2 steps,
we get another, smaller macrocell of dimensions 2n−1, which we shall call the
result of the macrocell and store with the macrocell in the hash table.

Figure 3: A macrocell, with its result in dashed lines.

However, as fancy as this seems, this offers a minimal computational advan-
tage compared to the algorithm before simulating every grid. The key insight
is to have an inductive function that calculates macrocell progressions based on

3



smaller macrocells.

For the base case, we can use a 4 by 4 macrocell, brute-forcing all possible
results after one step and storing them inside the hash table.

Now, let us proceed with the induction step. Given macrocells of size 2n

and their results after 2n−2 steps, we aim to compute a macrocell of size 2n+1

after 2n−1 steps.

Figure 4: Our larger macrocell, with its desired result and the 4 macrocells
inside it.

Immediately, we can see two problems with this configuration.

1. We only have the smaller macrocell’s result after 2n−2 steps. This means
that we are going to have two separate steps in order to progress 2n−1

steps.

2. As we can see above, the smaller macrocells do not have results that
completely fill up the larger macrocell’s result.

We can do this with the following algorithm:

First, we use nine overlapping 2n macrocells such that combining their re-
sults make a 3 · 2n−1 cell group.

Since the five added macrocells are ”irregular”, that is, they are not aligned
with the larger macrocell, we may not know their result. Fortunately, suppose
we scan across the hash table and don’t encounter a macrocell. In that case, we
may construct those irregular macrocells from the quadrants of the 2n macro-
cells and use these to calculate the result of the irregular macrocells.

4



Figure 5: The 9 macrocells making a 3 · 2n−1 cell group.

Now, we have the 3 · 2n−1 cell group after 2n−2 steps.

Figure 6: Solid line denotes our original macrocell, dotted line denotes our
current process, and dashed line denotes our desired result.

We can create another four overlapping 2n macrocells such that their results
match our expected result in our 2n+2 macrocell. Again, if we have not encoun-
tered an irregular macrocell, we may construct it from the quadrants of the 2n

macrocells and calculate its result from there.

Figure 7: The 4 overlapping 2n macrocells combining to form our final result.

Now, through 2 steps each of length 2n−2 steps, we have obtained the result

5



of the bigger macrocell after 2n−1 steps, as desired.

The recursive nature of this algorithm means that, provided the memory, the
board can be calculated in logarithmic time, which is an enormous improvement
over the polynomial time of simulating every cell.

4 Bibliography

References

[1] Gosper, R. Wm. ”Exploiting regularities in large cellular spaces.” Physica
D: Nonlinear Phenomena 10.1-2 (1984): 75-80.

[2] Rokicki, Tomas G. ”An Algorithm for Compressing Space and Time.” Dr.
Dobb’s, 1 Apr. 2006, www.drdobbs.com/jvm/an-algorithm-for-compressing-
space-and-t/184406478. Accessed 18 Dec. 2022.

[3] ”Hashlife.” Wikipedia, Wikimedia Foundation, 21 Jul. 2021,
en.wikipedia.org/wiki/Hashlife. Accessed 18 Dec. 2022.

6


