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Cellular automata can be used to model various real-world processes. For
example, they can model chemical reactions. A notable cellular automaton is
John Conway’s Game of Life.

Cellular Automata

A cellular automaton models a system which consists of objects called cells. It
has the following characteristics:

• Every cell has a state.

• Every cell exists on a grid.

• Every cell has a neighborhood, which is usually a list of cells adjacent to
a specific cell.

• A transition function which dictates how a new state is produced given
the current state of a cell.

More formally, a cellular automaton is a tuple (Zn, S,N, f), where

• Zn with the dimension n ≥ 1.

• S is a finite set of states.

• N is the neighborhood with N = (n1, n2, ..., nm) ∈ Zn.

• f : S|N | → S is the transition function.

A pattern is a configuration of cells on the grid which the cellular automaton
is operating on. When the rule is applied, all cells change at the same time.
In other words, a configuration (or pattern) c is changed into a configuration c′

where
c′(n) = f(c(n+ n1), ..., c(n+ nm)).

The global transition function G is the transformation c 7→ c′.
A generation is the unit of time in a cellular automaton. Then, generation
0 is the starting configuration and generation 1 is the pattern obtained after
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applying the transition function.
The orbit of c is the sequence

orb(c) = c,G1(c), G2(c), ...

where c is the initial configuration and Gt(c) is the configuration at time t. A
pattern is the parent of a pattern if it produces it after one generation.
A configuration c is

• a fixed point if G(c) = c.

• eventually fixed if Gn(c) = Gn+1(c) for some n.

• periodic if Gt(c) = c for some t.

• eventually periodic if Gn(c) = Gn+t(c) for some n.

The smallest t satisfying Gt(c) = c is the least period of c.
A cellular automaton is injective, bijective, or surjective if its transition function
is injective, bijective, or surjective.

Garden of Eden (GOE)

A configuration c is a GOE (Garden of Eden) configuration if it has no pre-
images. Additionally, a cellular automaton can only have GOE configurations
if it is not surjective. In other words, a GOE can have no parents and therefore
occurs in generation 0.
An orphan is a finite pattern that cannot evolve from another pattern. In other
words, a finite pattern without a pre-image is an orphan.
Proposition: Let c1, c2, ... be a converging sequence of configurations. Then
the sequence G(c1), G(c2), ... converges and

c = lim
i→∞

ci

in
lim
i→∞

G(ci) = G(c).

Proof. Let G be a transition function. Let n1 ∈ Zn and let k = max{k1, k2, ..., km}.
Since

c = lim
i→∞

ci,

for every j = 1, 2, ...,m there exists kj ∈ Z with kj > 0 such that

ci(n+ nj) = c(n+ nj) for all i ≥ kj .

When k ≤ i,
G(ci)(n) = f(ci(n+ n1), ..., ci(n+ nm))

= f(c(n+ n1), ..., c(n+ nm))

= G(c)(n).

Then, G(c1), G(c2), ... converges to G(c).
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Proposition: Every GOE configuration has a subpattern that is an orphan.

Proof. Let cE be a GOE configuration. Suppose cE has no subpattern which is
an orphan. Let e1, e2, ... denote the elements of Zn and let

Dj = {e1, e2, ...}

for every j ∈ Z with j > 0. Given the subpattern of cE with domain Dj is not
an orphan, there is a configuration cj such that G(cj) agrees with cE in Dj .
Then, the sequence

G(cE1
), G(cE2

), ...

converges to cE . Additionally, the sequence

cE1
, cE2

, ...

has a converging subsequence
ci1 , ci2 , ...

(where c denotes cE) with a limit l. Then, the sequence

G(ci1), G(ci2), ...

converges to G(l). However,
lim
j→∞

G(cij )

= lim
i→∞

G(ci)

= cE .

Then, G(l) = cE and therefore cE is not a GOE.

Moore Neighborhood

TheMoore neighborhood consists of the cells orthogonally or diagonally adjacent
to the area being discussed. This is in contrast to the von Neumann neighbor-
hood, which consists only of the cells orthogonally adjacent to the area being
discussed.

Game of Life

John Conway’sGame of Life is a cellular automaton. Its universe is an infinite 2-
dimensional grid consisting of square cells (like graph paper). The cells have two
possible states, on (live) or off (dead). Each cell interacts with eight adjacent
neighbors (a Moore neighborhood). The following transitions are occur:

• Any cell which is live with fewer than two neighbors which are live dies.
This is refered to as underpopulation.
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• Any live cell with more than three live neighbors dies. This is refered to
as overpopulation.

• Any live cell with two or three live neighbors remains unchanged.

• Any dead cell with exactly three live neighbors will come to life.

The rules meet certain criteria, namely

• There shouldn’t be a starting pattern which has a simple proof that the
population can grow without limit.

• There should be starting patterns that seem to grow without limit.

• There should be starting patterns that evolve for a while before coming
to an end in the following ways:

– Going away completely.

– Staying in a stable configuration that remains unchanged.

– Oscillating in an endless cycle of two or more periods.

Then, there is not an algorithm which can decide if, given the initial pattern
and a later pattern, the initial pattern will evolve into the later pattern. A
polyomino is a finite pattern of orthogonally connected connected cells.
The R-pentomino is a polyomino which does not stabilize until generation 1103.
This is in contrast to every other polyomino, which will stabilize in at most 10
generations.
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