
INTERACTIVE PROOF SYSTEMS

EZRA FURTADO-TIWARI

Abstract.
In this paper, we look at the potential of the class IP of interactive proofs. We first look
at deterministic verifiers/provers, and then continue on to survey the class IP, which

includes nondeterministic verifiers and provers. We go on to show IP = PSPACE, and
then show some examples of problems that are believed to not be in NP but that we have

interactive proofs for.

1. Introduction

Interactive proof systems are a complexity class in which we allow two machines to coop-
erate with each other in order to solve problems: we call these machines the prover and the
verifier, respectively. We consider nondeterministic machines for both, such that the system
accepts solutions with high probability, and rejects non-solutions with high probability. In-
teractive proof systems were first studied in the 1950s, but continue to be studied (especially
due to their use in cryptography).

In this paper, we will show that interactive proof systems are at least as powerful as the
more well known classes P and NP. We will discuss a proof that IP = PSPACE later in
the paper; PSPACE is conjectured to be more powerful than P, so we might conjecture
that interactive proof systems are also more powerful than P.

2. Deterministic Interactive Proof Systems

We start by considering more restricted interactive proof systems; we will show that simply
adding interaction does not give us an advantage in terms of the problems we can solve.

Definition 2.1. Let f, g : {0, 1}∗ → {0, 1}∗ be functions. A k-round interaction between f
and g on an input x ∈ {0, 1}∗ is a sequence a1, a2, . . . , ak such that

a1 = f(x)

a2 = g(x, a1)

a3 = f(x, a1, a2)

· · ·
a2n = g(x, a1, . . . , a2n)

a2n+1 = f(x, a1, . . . , a2n+1).

We denote this interaction by ⟨f, g⟩ (x). We let the output of f after interaction with g be
f(x, a1, . . . , ak), and denote this by outf ⟨f, g⟩ (x).

Date: December 11, 2022.
1

2 EZRA FURTADO-TIWARI

Essentially, we have two machines communicating by giving each other inputs based on
what they receive. Note that we do not strictly follow the definition of a ’function’ here,
but instead assume that given a series of arguments, the ’functions’ in question will provide
exactly one output.

Definition 2.2. A language L has a k-round deterministic interactive proof system if there
exists a deterministic Turing Machine V such that when given (x, a1, . . . , ak), it runs in
polynomial time in |x| and satisfies the following properties:

x ∈ L =⇒ ∃Q : {0, 1}∗ → {0, 1}∗outV ⟨V,Q⟩ (x) = 1

x ̸∈ L =⇒ ∀Q : {0, 1}∗ → {0, 1}∗outV ⟨V,Q⟩ (x) = 0.

We call these properties completeness and soundness, respectively. Last, we define the class
dIP to be the class consisting of k(x)-round deterministic interactive proof systems, where
k(x) is a polynomial in x.

Note that Q provides a proof, while V verifies it. In other words, the first statement
means that every true statement has a proof, while the second statement means that no
false statements have proofs.

Theorem 2.3. dIP = NP.

Proof. Note first that every language in NP can be verified in a single round of interaction.
Thus, it suffices to prove that every language L ∈ dIP is also in NP. Note that to certify
that L ∈ NP, we just need to verify the certificate (a1, a2, . . . , ak). Then we just need to
check that a verifier V exists such that V (x) = a1, V (x, a1, a2) = a3, V (x, a1, a2, a3, a4) =
a5, andV(x, a1, . . . , ak) = 1, as we can then construct a prover P such that P (x, a1) =
a2, P (x, a1, a2, a3) = a4, P (x, a1, . . . , ak−1) = ak. Thus outV ⟨V, P ⟩ (x) = 1, so x ∈ L and
thus every language L ∈ dIP is also in NP. ■

Essentially, using interactive proofs without randomness does not increase our options at
all, which is surprising. We might wonder whether nondeterministic interactive proofs are
better, so we consider this class next.

3. Nondeterministic Interactive Proof Systems

Definition 3.1. Let z : N → N be a function such that z(n) is computable in polynomial
time. A language L is considered to be in IP[z] if there exists a Turing Machine V such
that when given (x, a1, . . . , ak), it runs in polynomial time in |x| and satisfies the following
properties:

x ∈ L =⇒ ∃Q : {0, 1}∗ → {0, 1}∗P [outV ⟨V,Q⟩ (x) = 1] ≥ 2

3

x ̸∈ L =⇒ ∀Q : {0, 1}∗ → {0, 1}∗P [outV ⟨V,Q⟩ (x) = 1] ≤ 1

3
.

Again, we refer to these properties as completeness and soundness, respectively. Last, we
define the class IP to be ∪∞

c=1IP [nc] .

INTERACTIVE PROOF SYSTEMS 3

In other words, all L ∈ IP[z] have proofs with probability ≥ 2
3
, and the chance that there

exists a proof for a language L ̸∈ IP[z] is ≤ 1
3
. We note here that 2

3
and 1

3
are not special

numbers and can be replaced by different values x1 and x2, respectively (both less than 1,
satisfying x1 + x2 = 1) without changing the power of the proof system.
Here we discover a surprising result; adding randomness to our interaction makes interac-

tive proofs quite a bit more powerful.

Theorem 3.2. IP = PSPACE.

First, we can prove IP ⊆ PSPACE:

Lemma 3.3. IP ⊆ PSPACE.

Proof Sketch. Note that given any verifier, we can compute every possible path of interaction
between it and a prover, and construct the optimal prover in polynomial space (and 2poly|x|

time). Thus IP ⊆ PSPACE. ■

It remains to prove that PSPACE ⊆ IP. To prove this, we start by considering the
problem TQBF.

Definition 3.4. A quantified boolean formula is a boolean formula in the form

Q1x1Q2x2Q3x3 . . . Qnxnφ(x1, x2, . . . , xn),

where φ(x1, x2, . . . , xn) is an unquantified boolean statement, the xi are variables, and the Qi

are quantifiers (∀ or ∃). We define TQBF to be the set of true quantified boolean formulae.

Lemma 3.5. TQBF ∈ PSPACE.

Proof. Let

ψ = Q1x1Q2x2Q3x3 . . . Qnxnφ(x1, x2, . . . , xn)

be a quantified boolean formula, and let the sizes of ψ and φ(x1, x2, . . . , xn) be n and m,
respectively. First, note that we can assume n > 0, as a formula with no variables contains
only φ(c1, c2, . . .) for some constants ci, and can thus be evaluated with O(m) space. For
n > 0, consider the following recursive algorithm X:

(1) Let the process ψx1|c represent the statement replacing x1 with the constant c and
removing the quantifier Q1.

(2) Evaluate X(ψx1|c) and X(ψx2|c).
(3) If Q1 = ∃, then check that one of the two calls to the algorithm returns 1; otherwise

check that both return 1. If this is satisfied, return 1; else return 0.

The trick here is to store the results of computation efficiently. Consider both calls to X
(note that there are 2 for each n ≥ 0). We can first compute the result of one computation,
store it, and then use the same space the compute the result of the other computation. Thus
we use O(n) +O(n ·m) = O(n ·m) space, so TQBF ∈ PSPACE. ■

Lemma 3.6. TQBF is PSPACE-complete.

We omit this proof from this paper; the reader is encouraged to consult [AB07] for the
proof.

Lemma 3.7. PSPACE ⊆ IP.

4 EZRA FURTADO-TIWARI

Proof. We first consider the process of arithmetization. Essentially, we can convert our
boolean formulae into polynomials. Let variables X, Y, Z represent booleans x, y, z (so that
they take on values 0 and 1). Then we can make the following reductions:

x ∧ y ⇐⇒ X · Y
¬x⇐⇒ (1−X)

x ∨ y ⇐⇒ ¬(¬x ∧ ¬y) ⇐⇒ 1− (1−X)(1− Y).

Then for each statement φ(x1, x2, . . . , xn), we can consider an equivalent polynomial
Pφ(X1, X2, . . . , Xn).
Consider a specific quantified boolean formula

σ = ∃x1∀x2∃x3 . . . ∀xnφ(x1, x2, . . . , xn).
Then the arithmetization of this formula is∑

X1∈{0,1}

∏
X2∈{0,1}

∑
X3∈{0,1}

· · ·
∏

Xn∈{0,1}

Pφ(X1, X2, . . . , Xn),

and we need to check that this is greater than 0. Now, note that since all Xi are either 0 or 1,
we can convert our polynomial Pφ(X1, X2, . . . , Xn) into an equivalent multilinear polynomial
Kφ(X1, X2, . . . , Xn), where the degree of each term is 1. This would allow us to reduce our
problem to a sum ∑

X1∈{0,1}

∑
X2∈{0,1}

∑
X3∈{0,1}

· · ·
∑

Xn∈{0,1}

g(X1, X2, . . . , Xn)

for some polynomial g. We can use a similar algorithm to the one we used to prove TQBF ∈
PSPACE to compute this using an interactive proof.

Consider the following protocol:

(1) (Prover) If n = 1, check that g(0) + g(1) > 0. If so, accept, else reject. Otherwise,
ask the verifier to send a polynomial f(a), where

f(a) = g(a,X2, . . . , Xn).

(2) (Verifier) Send the polynomial f(a).
(3) (Prover) If f(0)+f(1) = 0, then reject. Otherwise, pick a random b. Use this protocol

to check
0 < g(b,X2, . . . , Xn).

Note that since TQBF is PSPACE-complete, we can conclude that PSPACE ⊆ IP. ■

Proof of Theorem 3.2. Combining Lemma 3.3 and Lemma 3.7, we have that IP = PSPACE
as desired. ■

4. Graph Non-Isomorphism

In this section we attempt to provide an example of an interactive proof, while also showing
the strengths of this proof method. We know quite a bit about the graph isomorphism
problem, notably that it is in NP. Because it is in NP, we know that it is in IP. Since
IP = PSPACE and PSPACE is closed under complements, we know that the complement
of graph isomorphism is in IP.

INTERACTIVE PROOF SYSTEMS 5

Consider two graphs G and H, and assume that we wish to prove that G ̸∼= H.We consider
the following protocol to solve this problem:

(1) (Verifier) Generate some graph G′ isomorphic to G, and some graph H ′ isomorphic
to H.

(2) (Verifier) Decide randomly (using a private coin flip) whether or not to send (G,G′)
or (G,H ′).

(3) (Prover) Send the result of the coin flip, encoded as a bit.
(4) (Verifier) If the prover is wrong about the result, then reject. Otherwise, continue.
(5) Repeat a constant number of times.

If the prover is wrong about the result, then we determine that the prover is unable to tell
the difference between the two graphs, and thus we reject. Otherwise, we assume that the
prover is better than guessing, and thus can determine whether or not the two graphs are
isomorphic. Using a large number of repetitions, we can ensure that the prover is correct
about the result a large proportion of the time, so this is enough to satisfy that the protocol
is a valid interactive proof.

Similarly, we note that an interactive proof can be formulated for the complement of any
problem in NP. In other words, co-NP ⊆ PSPACE = IP.

5. Conclusion

Interactive proofs allow us to solve a much wider range of problems than we know to be in
NP. Showing that IP = PSPACE allows us to further formalize which kinds of problems
we can solve using interactive proof systems, and also allows us to understand the types of
problems that we would be able to solve if co-NP = NP, P = NP, PSPACE = NP,
and so on. However, there are still many interesting questions relating to interactive proof
systems alone.

For instance, when we described a protocol for graph nonisomorphism, it was important
to the protocol that the coin was flipped in private. But how would the class change if we
were forced to use only public coins? This gives us the class AM of Arthur-Merlin games.
An important result is that AM = IP (see [Lau11]).
In addition to this, we can restrict the output that can be given by the prover and verifier,

which would give us yet another system: zero-knowledge proofs (ZKP). Notably, NP ⊆
ZKP (see [Zul06]), which gives us more information about the power of the class IP. Even
with restricted machines, the possibility of randomness allows us to possibly solve more
problems than can be solved without interaction.

Various problems still remain open in both of these fields.

References

[AB07] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge Uni-
versity Press, 2007.

[Lau11] Peeter Laud. Complexity theory. 2011.
[Zul06] Florian Zuleger. Interactive proof systems. 2006.

	1. Introduction
	2. Deterministic Interactive Proof Systems
	3. Nondeterministic Interactive Proof Systems
	4. Graph Non-Isomorphism
	5. Conclusion
	References

