
PCP

EKAM KAUR

Abstract. In this paper, we introduce the idea of probabilistically checkable proof systems
and their use. We then state the PCP theorem and also its equivalent view of the hardness
of approximation.

1. Introduction

A probabilistically checkable proof consists of a probabilistic verifier, which for a language
L and x ∈ L, can say with certainity that the string is indeed in L. For a string not in L, it
can say this with probability less than 1

2
.

Naively, in a working system, we have both a prover and a verifier. The verifier is an
algorithm which first reads the input, and then the proof written by the prover. Then using
that information, the verifier outputs whether it accepts or not. Here, the verifier reads the
entire proof, and can say with certainty whether the input is in the language.

However, more realistically, we also have randomness. This means that the verifier tosses
some coins (in O(log n) time) in order determine which part of the proof to read. This is
done via random access queries.

Now, we cannot say with certainty whether a given input belongs to a language. However,
we design it such that the following holds.

Definition 1.1. A probabilistically checkable proof system for a language L is given by a
verifier M such that both of the following hold:

• Completeness: For every input x ∈ L there exists a string proof π, such that the
probability that π accepts x is 1

• Soundness: For every x /∈ L and for every proof π, the probability that π accepts x
in less than 1

2
.

Note that the 1
2
can be improved by repeating the process multiple times.

Given this, it is a natural first question to ask how many queries a PCP system takes to
process a string in L.

Next, we consider which languages can be modeled by a PCP system. It turns out that
this depends largely on what kind of access the system has. Thus, we instead consider the
following modified definition below.

Definition 1.2. The complexity class PCP (r(n), q(n)) consists of all languages such that
the following hold:

The verifier processes an input x in at most r(|x|) coin flips, and the verifier makes at
most q(|x|) queries to do so.

We can list the following assertions where poly is the set of all integer function bounded
above by a polynomial and log is the set of all functions bounded by a logarithmic function:

Date: November 2022.
1

2 EKAM KAUR

• PCP(0, 0) = P
• PCP(O(log n), 0) = PCP(0, O(log n))) = P
• PCP(0, poly(n)) = NP

Note that since the verifier M runs in polynomial time in |x|, the length of π should be at
most exponential in |x|. In fact, we may assume that length of π given an input of length
n, is at most 2r(n)q(n).

Also note that here, we say that the verifier is non-adaptive (meaning that the set of queries
is fixed) rather than adaptive (it can use the result of the previous queries to determine the
next index).

2. PCP Theorem

We begin by showing the following.

Lemma 2.1. PCP(log, poly) = NP.

Proof. Clearly, we have NP ⊆ PCP(log, 1). For the other direction, let L ∈ PCP(log, poly)
and let A be the verifier for L. For given x ∈ L, we will show how to construct a witness
for x; the NP-machine deciding L will follow naturally. Note that we cannot simply use a
”good” proof πx (which is guaranteed to exist since x ∈ L) because πx may be exponentially
long. However, we can use a ”compressed” version of πx. In particular, imagine running
A for all possible settings of its O(log n) random coins (here, n = |x|). This results in a
set S of only polynomially-many indices at which A potentially reads πx (for each setting
of its random coins, A reads poly-many indices; there are only 2O(logn) = poly(n) settings
of the random coins). These queries/answers {(i, πi)}i∈S will be our NP witness. Our NP
algorithm for L is simple: on input a witness w of the above form, simulate the computation
of A (in the natural way) for all possible settings of its random coins. Accept only if A
accepts in all these executions. (If A tries to read an index which is not present in w, we
count this as a rejection by A.) It is not hard to see that this indeed gives a NP machine
deciding L.

■

In this section we present the PCP theorem by looking at the satisfiability problem which
suffices since that is NP-complete. The main theorem essentially says that every NP language
has a PCP verifier that is highly efficient.

First we see what such a system looks like, we give the following examples:

Example. The following is ”toy” example of the system: First, we define the problem. The
gap3SAT problem is the problem of deciding 3CNF formula satisfiability under the promise
that the input formula is either satisfiable, or that no assignment satisfies more than half of
its clauses.

We construct the following PCP algorithm for it. Given an input formula ϕ and proof π,
the PCP verifier samples a uniformly random clause C, then reads the assignments for the
three variables that appear in C and accepts if and only the assignment satisfies C.
We can see that this above example is indeed a valid system. However, it does not use

the powerful idea of why PCP systems are useful. What we really want is to determine a
global property from making a few local observations. In this case, we want to determine
the correctness of the proof while making a few local queries.

We also have the following example:

PCP 3

Example. We look at the language GNI consisting of pairs of nonisomorphic graphs in
PCP(poly, 1). Assume that the input is ⟨G0, G1⟩ both with n nodes. Here the proof π
is a long array of bits indexed by all possible n-vertex graphs where each bit is 0 or 1 de-
pending on which graph it is isomorphic to. We choose arbitrarily if a graph is isomorphic
to neither G0 or G1. The verifier picks G0 or G1 and chooses a random permutation of the
vertices. It applies this permutation on the graph to obtain an isomorphic graph H. Then
it gets the corresponding bit of π and accepts if and only if it matches the original graph.
If G0 ≇ G1, then given a proof π, the verifier accepts with probability 1. If G1

∼= G1, then
it accepts with probability at most 1

2
.

Precisely, the PCP theorem states the following:

Theorem 2.2. (The PCP Theorem) PCP(log, 1) = NP

Note that PCP (r(n), q(n)) ⊆ NTIME(2O(r(n))q(n)) since a nondeterministic TM can
guess the proof in 2O(r(n))q(n) time and deterministically verify all the 2O(r(n)) choices of its
random coin tosses. If this verifier accepts for all coin tosses, the nondeterministic machine
also accepts. Otherwise it rejects. In particular this implies that PCP (log, 1) ⊆ NP which
is the easy direction of the PCP theorem.

Lastly, we also state without proof the following theorem.

Theorem 2.3. PCP(poly, poly) = NEXP

3. Hardness of Approximation

Another view of the PCP theorem is related to hardness of approximation. Many combi-
natorial optimization problems are NP hard to solve exactly, but this view of PCP theorem
tells us that it is also hard to even approximate them.

First, we define an the notion of an approximation algorithm.

Definition 3.1. (Approximation Algorithm) Take ρ < 1. The ρ-approximation for ϕ is
an algorithm A such that for every 3CNF formula with m clauses, A gives an assignment
satisfying at least ρ · val(ϕ)m clauses.

First, consider the following. Given a graph G, say we color the vertices with numbers
from the set {1, . . . , k}. Then we want to find the coloring which maximizes the number of
bichromatic edges. Assuming P ̸= NP , this cannot be done in polynomial time. However,
it is also hard to find a coloring which gives a large amount, say 0.999M , of bichromatic
edges (which would be a good substitute for the optimal one). Although, we do not know of
such an algorithm, the theory of NP -completeness does not rule out the possibility of there
existing one.

The PCP theorem, does however, allow us to do the following. We consider a function f
mapping an input from an NP complete language to a k-graph coloring. This satisfies:

• If the input x ∈ L, then f(x) maps to a satisfying coloring.
• If x /∈ L, then f(x) is such that no other coloring satisfies 0.999 of the satisfied edges
of f(x).

This would then allow us to rule out a 0.999 approximation algorithm.
Next, for concreteness, we use the MAX-3SAT problem to show what the PCP theorem

tells us.

4 EKAM KAUR

Theorem 3.2. (PCP Theorem) There exists some ρ < 1 such that for every L ∈ NP , there
is some polynomial time function f mapping strings to 3CNF formulas such that

• (Completeness) If x is in L, then val(f(x)) = 1
• (Soundness) If x is not in L, then val(f(x)) < ρ.

Here val(ϕ) is defined to be the maximum fraction of clauses that can be satisfied via some
assignment of variables.

Note that the existence of a ρ approximation algorithm would imply that P = NP . Next,
we establish the connection between the two views by first introducing the following lemma

Lemma 3.3. There exists a constant c such that we cannot approximate the number of
maximum number of clauses in a 3 CNF formula to a factor of c.

To make this more precise, we give a more formal definition.

Definition 3.4. Given a formula ϕ and an assignment a of the variables in ϕ, let SATa(ϕ)
denote the fraction of all clauses satisfies by the assignment. Also let max-SAT(ϕ) be the
maximum value of S if and only if there exists a satisfying assignment.

To see that there is no upper bound, consider the following. Take a unsatisfiable sentence
ϕ with m clauses. Then it is possible for max− SAT(ϕ) = 1− 1

m
, as needed.

To check a lower bound, we claim that max− SAT(ϕ) ≥ 7
8
. To see this, note that given

a random assignment a, the probability that it satisfies a given clause is 7
8
. So the expected

value of total clauses is satisfies is 7
8
. Thus, there exists an assignment satisfying more than

7
8
of the clauses.
Note that that a polynomial time algorithm is a ρ(·) approximation algorithm if it always

outputs a ρ(|ϕ|)-approximation for ϕ.
Also note that a 1 approximation algorithm for the 3-SAT problem would mean we could

solve it in polynomial time. We have also already seen that 7
8
approximation is trivially

possible. So how much better can we really do?
To answer this, we first define the following, similar to what we did in the k-coloring

example:

Definition 3.5. (Amplyfying reduction) Let c < 1. A c-amplifying reduction of 3SAT is a
polynomial-time function f on 3CNF formulae such that:

• If ϕ is satisfiable, then f(ϕ) is satisfiable.
• If ϕ is not satisfiable, then every assignment to the variables in f(ϕ) satisfies at most
a c-fraction of the clauses in f(ϕ).

Note that the above mapping gives us stability, meaning that small changes in ϕ lead to
small changes in the solution set.

Relating back to our problem, we have the following lemma showing the hardness of
approximation:

Lemma 3.6. Assume P ̸= NP and that 3 - SAT has a c−1-amplifying reduction. Then
there is no c approximation algorithm for the 3 - SAT problem.

Proof. We prove this by contradiction. Suppose that there is such an algorithm. Then we
can deterministically solve 3SAT in polynomial time as follows. On an input ϕ, run A(f(ϕ))
to obtain output k. If k ≥ c, output 1, and otherwise output 0. To see that this works, note

PCP 5

that if ϕ is satisfiable then max-SAT (f(ϕ)) = 1. So the output k of A must be at least c.
On the other hand, when ϕ is not satisfiable then max− SAT(f(ϕ)) < c and so the output
k of A must satisfy k < c. ■

Finally, we establish the connection of this to the PCP theorem with the following theorem
showing that they are equivalent.

Theorem 3.7. NP ⊆ PCP(log, 1) iff 3SAT has an amplifying reduction.

(Note that this implies that it is possible to prove the PCP theorem by constructing an
amplifying reduction.)

Proof. For the ”only if” direction assuming 3SAT has an amplifying reduction, we can con-
struct the following system. First, on an input, the verifier computes f(ϕ). To check the
proof, the verifier chooses a random clause in f(ϕ), query for the assignments to the 3 vari-
ables of that clause, and then verify that the clause is satisfied for those settings of the
variables. If ϕ is satisfiable then f(ϕ) is satisfiable which means a valid proof exists. On the
other hand, if ϕ is not satisfiable then at most a c-fraction of the clauses in f(ϕ) are satis-
fiable (for any assignment to the variables), so the verifier accepts with probability at most
c regardless of the proof. Since c is a constant, repeating the above procedure a constant
number of times (and accepting only if each procedure leads to acceptance) will give the de-
sired soundness error 1/2 using an overall constant number of queries. Also, the number of
random bits needed to select a random clause is logarithmic in |ϕ| since |f(ϕ)| is polynomial
in |ϕ|.
For the other direction, assume that NP ⊆ PCP (log, 1). Then we describe an amplifying

reduction as follows. Let V be the verifier using c log n random coins and t queries. On an
input of a 3CNF formula ϕ, do the following:

(1) Determine the t indices q1, . . . , qt that the verifier chooses when using random coins
r.

(2) Run the verifier on all possible settings for the bits of the proof to determine when the

verifier accepts. Then we can define a CNF formula ϕ̂r on the variables xq1 , . . . , xqt

such that ϕ̂r is true exactly when V accepts. Note that the number of clauses in ϕ̂r

is constant since t is constant. Then we can convert this using auxiliary variables to
a 3CNF formuls ϕr. The number of clauses in this is also constant.

Then we let f(ϕ) =
∧

r∈{0,1}c logn ϕr. We claim that this is an amplifying reduction. Note

that if ϕ is satisfiable then f(ϕ) is also by completeness of the system. If ϕ is not satisfiable,
then for any setting of the variables in f(ϕ), at least half of all the ϕr are not satisfied. Let
t′ denote the maximum number of clauses in any of the ϕr. Then for any setting of the
variables, at least 1

2
t′ of the clauses are unsatisfied. This implies that the fraction of satisfied

clauses is at most 1− 1
2
t′ which means that f is a c-amplifying reduction for any c > 1− 1

2
t′.
■

References

[1] Katz, Jonathan Notes on Complexity Theory https://www.cs.umd.edu/~jkatz/complexity/f05/

lecture12.pdf

[2] Arora, Sanjeev, Barak, Boaz 2009 Computational Complexity: A Modern Approach https://theory.

cs.princeton.edu/complexity/excerpt.pdf

[3] Scheideler, Christian Probabilistically Checkable Proofs John Hopkins University https://www.cs.jhu.

edu/~scheideler/courses/600.471_S05/lecture_8.pdf

https://www.cs.umd.edu/~jkatz/complexity/f05/lecture12.pdf
https://www.cs.umd.edu/~jkatz/complexity/f05/lecture12.pdf
https://theory.cs.princeton.edu/complexity/excerpt.pdf
https://theory.cs.princeton.edu/complexity/excerpt.pdf
https://www.cs.jhu.edu/~scheideler/courses/600.471_S05/lecture_8.pdf
https://www.cs.jhu.edu/~scheideler/courses/600.471_S05/lecture_8.pdf

6 EKAM KAUR

[4] Song, Min Jae An introduction to the PCP theorem 2013. University of Chicago. https://math.

uchicago.edu/~may/REU2013/REUPapers/Song.pdf

https://math.uchicago.edu/~may/REU2013/REUPapers/Song.pdf
https://math.uchicago.edu/~may/REU2013/REUPapers/Song.pdf

	1. Introduction
	2. PCP Theorem
	3. Hardness of Approximation
	References

