
Hilbert’s 10th Problem

Brian Wu

November 2022

Abstract

A solution to Hilbert’s 10th problem is described here, largely follow-
ing [1]. This is done through the use of Diophantine sets, Diophantine
functions, and recursive(µ-recursive) functions. Hilbert’s 10th problem
asks for an algorithm to check whether a given Diophantine equation is
solvable. However, Matiyasevich proved that this was impossible, that no
such algorithm could exist. A solution, not the original, is discussed here.

Contents

1 Introduction 1

2 Preparation 3

3 The Proof 6

1 Introduction

The ancient Greeks were really into math. This is a pretty supported
statement, and it helps to remember that before the advent of science, math
was studied for its own sake. In the time of the ancient Greeks this was
certainly the case, there was no science as we think of it. No dynamics or
electromagnetism or ideal gas or anything of the sort. Math was studied for
the sake of math, without all the applications it’s more like an elaborate game
and this was certainly one of the perspectives taken. Now in this time there
was this mathematician called Diophantus who we know very little about. In
fact, one of the only things we know about him is that he lived until 84 years
old, thanks to a riddle given about his age. Now aside from the fact that one
of the only things we know of him comes from a math problem, something
interesting about him is that he is the name sake of Diophantine equations,
which continues to be an object of fascination well into the modern day.

Diophantine equations are just polynomial equations with integer
coefficients(we only consider integer solutions). So for example an equation

1



like 5x3 + 7y2 − 6z = 0 is Diophantine but 5.3x3 + 7y2 − 6z = 0 isn’t since 5.3
is not an integer. Diophantine equations turns up everywhere, including in
many puzzles, and some can be shockingly difficult to solve. In the 20th
century, Hilbert created a list of 23 problems and among them was the
question of whether there was some universal way to check whether a
Diophantine equation has a solution. In 1970, the problem was solved in the
negative in the doctoral paper of one Yuri Matiyasevich. One implication here
being that some Diophantine equations are indeed really, really tough to solve.
However, this also guides some mathematical research. In particular,
Diophantine equations are known for sometimes looking deceptively simple.
For example, the equation x3 + y3 + z3 = 42 was without a known
(integer)solution for 65 years, and when the solution was found it still took
over a million hours of computer time.
With that being said, the topic discussed here will be a very summarized
version of the proof. It is probably important to first talk about what Hilbert’s
10th problem actually is. So for Diophantine equations we only consider
integer solutions, and what Hilbert’s 10th problem asks is whether there exists
some algorithm, so in other words a finite set of rules, where we can determine
if any given Diophantine equation is solvable. This does not sound so
impossible since it’s still just another class of equations and people can be very
clever with algorithms. However, as we now know, such an algorithm does not
exist.

Let’s think about one specific way to approach this problem. So the problem
asks if there exists an algorithm to determine, for any given Diophantine
equation, whether it has integer solutions. If we wanted to prove it in the
negative, we just need to find a single counterexample. In other words, a single
solvable Diophantine equation where there exists no such algorithm. In fact we
can broaden this a bit more, we just need to find a single set of coefficients
that is not recursive where there exists a solvable Diophantine equation with
those coefficients. This idea of finding a set of coefficients that are not
decidable but also the coefficients of a solvable Diophantine equation is that of
Diophantine sets.

A Diophantine set is a set of integers (a1, a2, · · · , an) such that there exists
some set of integers (x1, · · · , xn) such that there exists a polynomial
P (a1, · · · , an, x1, · · · , xn) where P (a1, · · · , an, x1, · · · , xn) = 0 . In less formal
terms, A Diophantine set is the set of coefficients of some solvable Diophantine
equation. Now the way that Matiyasevich did it was he showed that the
solutions to some Diophantine equations can grow exponentially, and earlier
work in the field by Davis, Robinson, and Putnam showed that if it could grow
exponentially, then every recursively enumerable set would be Diophantine.
This is not however the avenue that we will take. Notice that there exists
recursively enumerable sets that are not decidable, so you have a Diophantine
set that is not recursive which implies that there cannot exist a universal
algorithm, more details than this are of course supplied.

2



Here’s a rough description of what we will be doing. We will define something
called Diophantine functions whose graph has Diophantine sets in it(this will
make more sense later when we define it). Then we will show that a function
is Diophantine if and only if it is a recursive function. This is then used to
prove that a set is Diophantine if and only if it is recursively enumerable. The
solution to Hilbert’s 10th problem is achieved from proof by contradiction
using the result that a set is Diophantine if and only if it is recursively
enumerable.

This discussion will be split into two halves. In the first half we will start
building up the results and in the second we will actually prove the
impossibility of Hilbert’s 10th problem.

2 Preparation

In proofs it is often more easy to describe functions as the intersection of
functions and talk about the properties of the functions over the properties of
the set itself and that is indeed true here. This idea is what created
Diophantine functions, functions whose ”graph” is a Diophantine set.

Definition 1. A function f is Diophantine if {x1, · · · , xn, y|y = f(x1, · · · , xn}
is a Diophantine set.

Now due to the abstract nature of functions, this describes Diophantine sets
well, since we can basically just define functions however we want. However, it
is due to the abstract nature that this does not seem useful. However, as we
will show later, We can exhaustively build Diophantine functions from simpler
ones using a strict set of rules(Recursive functions). It should be mentioned
that the domain of Diophantine functions is taken to be Z+.

We need one more result about Diophantine functions called the Sequence
number theorem first. What this basically says is that Diophantine functions
are indeed as abstract as we need them to be.

Theorem 1. There exists a Diophantine function S(i, u) such that S(i, u) ≤ u
and for each sequence a1, · · · , an, there exists u such that S(i, u) = ai for
1 ≤ i ≤ n

Now we can talk about recursive functions, which are functions that are built
up from 4 fundamental functions, which are

• c(x) = 1

• s(x) = x+ 1

• Un
i (x1, · · · , xn) = xi 1 ≤ i ≤ n

3



• S(i, u)

Using the operations of

• Composition:
h(x1, · · · , xn) = F (g1(x1, · · · , xn), · · · , gm(x1, · · · , xn))

• Primitive Recursion:
h(x1, · · · , xn, 1) = f(x1, · · · , xn)
h(x1, · · · , xn, t+ 1) = g(t, h(x1, · · · , xn, t), x1, · · ·xn)

• Minimalization:
h(x1, · · · , xn) = miny[f(x1, · · · , xn, y) = g(x1, · · · , xn, y)]

Composition is just generally useful, allows combinations of functions, I can’t
really tell you what primitive recursion is for since I don’t know either,
minimalization is finding the the smallest y that satisifies the given equation.

We can now prove one of our major results

Theorem 2. A function is Diophantine if and only if it is recursive.

Proof:
We first show that all Diophantine functions are recursive. The idea here is
that all Diophantine functions can be described through Diophantine
equations(this will become more clear in a bit) and that every Diophantine
polynomial can be given through a few operations, all of which we can show to
be recursive.

1. x+ y is recursive since x+ 1 = s(x) and
x+ (t+ 1) = s(x+ t) = s(U3

2 (t, x+ t, x)). Here we have used primitive
recursion.

2. x · y is recursive since x · 1 = U1
1 (x) and

x · (t+ 1) = (x · t) + x = g(t, x · t, x) where
g(u, v, w) = U3

2 (u, v, w) + U3
3 (u, v, w). Here we have used composition

and primitive recursion.

3. For all fixed k, ck(x) = k is recursive since c1(x) = c(x) and
ck+1(x) = ck(x) + c(x). Here we have used composition.

With these operations, we can form any polynomial with positive coefficients
and thus any polynomial with positive coefficients is recursive. Now, earlier it
was mentioned that all Diophantine functions can be described through
Diophantine equations and here’s what is meant by that. If f is a Diophantine
function then we can write y = f(x1, · · · , xn) ⇐⇒
(∃t1, · · · , tm)[P (x1, · · · , xn, y, t1, · · · , tm) = Q(x1, · · · , xn, y, t1, · · · , tm)] where
P and Q are Diophantine polynomials. Using the Sequence Number Theorem,
we can write

4



f(x1, · · · , xn) = S(1,minu[P (x1, · · · , xn, S(1, u), S(2, u), · · · , S(m+ 1, u)) =
Q(x1, · · · , xn, S(1, u), S(2, u), · · · , S(m+ 1, u))]).
Now this is a pretty massive leap so let’s break it down piece by piece. First,
we are using the recursive function S(i, u) to represent (y, t1, · · · , tm) since any
sequence can be represented by it(by the Sequence Number Theorem). Now
notice that the minimalization operation gives the smallest u for any given
x1, · · · , xn, and by the sequence number theorem, we represented y with
S(1, u). Note that this is the same u that the minimalization operation gives.
Thus we have y = S(1,minu[P (x1, · · · , xn, S(1, u), S(2, u), · · · , S(m+ 1, u)) =
Q(x1, · · · , xn, S(1, u), S(2, u), · · · , S(m+ 1, u))]). And so the graph of this
function is (x1, · · · , xn, y), which is the same graph as f(x1, · · · , xn). Thus
they are equal. Notice that the way we wrote it used only recursive functions,
since as we’ve shown earlier that Diophantine polynomials are recursive. Thus
every Diophantine function is recursive.

We now prove the other direction, that is that every recursive function is
Diophantine. We know that S(i, u) is a Diophantine function. c(x) = 1,
s(x) = x+ 1 and Un

i (x1, · · · , xn) = xi are Diophantine functions(you can come
up with a formulaic way to find a Diophantine equation for each to convince
yourself further if needed). So then all we need to show is that Diophantine
functions are closed under composition, primitive recursion, and
minimalization. To do so we need to introduce the idea of Diophantine
predicates.

Given Diophantine functions, we can use the predicates ∧(and), ∨(or), ∀(for
all), and ∃(there exists) to form other Diophantine functions. You will have to
take me at my word for this one.

1. Composition: If h(x1, · · · , xn) = f(g1(x1, · · · , xn), · · · , gm(x1, · · ·xn)),
and all the functions involved to create it are Diophantine functions, we
write h in the following way.
y = h(x1, · · · , xn) ⇐⇒ (∃t1, · · · , tm)[t1 = g1(x1, · · · , xn) ∧ · · · ∧ tm =
gm(x1, · · · , xn) ∧ y = f(t1, · · · , tm)] Since we used predicates to form this
new function, h is a Diophantine function by the closure of Diophantine
functions under Diophantine predicates.

2. Primitive Recursion: If h(x1, · · · , xn, 1) = f(x1, · · · , xn) and
h(x1, · · · , xn, t+ 1) = g(t, h(x1, · · · , xn, t), x1, · · · , xn), where f and g are
Diophantine, then by the Sequence number theorem(using it to represent
h(x1, · · ·xn, 1), h(x1, · · ·xn, 2), · · · , h(x1, · · ·xn, z))
y = h(x1, · · · , xn, z) ⇐⇒ (∃u){(∃v[v = S(1, u) ∧ v =
f(x1, · · · , xn)] ∧ (∀t)≤z[(t = z) ∨ (∃v)(v = S(t+ 1, u) ∧ v =
g(t, S(t, u), x1, · · · , xn))] ∧ y = S(z, u)}

3. Minimalization: If
h(x1, · · · , xn) = miny[f(x1, · · · , xn, y) = g(x1, · · · , xn, y)] where f and g
are Diophantine, then we can write h as a Diophantine function like the

5



following. y = h(x1, · · · , xn) ⇐⇒ (∃z)[z = f(x1, · · · , xn, y) ∧ z =
g(x1, · · · , xn, y)] ∧ (∀t)≤y[(t = y) ∨ (∃u, v)(u = f(x1, · · · , xn, t) ∧ v =
g(x1, · · · , xn, t) ∧ (u < v ∨ v < u)]

■

Now that we are done with the proof that Diophantine functions are equivalent
to Recursive functions, we move on to the next big result, which is the last
piece of the puzzle before finishing this solution to Hilbert’s 10th problem.
We will be using an equivalent definition of recursively enumerable.

Definition 2. A set S of n-tuples of positive integers is called recursively
enumerable if there are recursive functions f(x, x1, · · · , xn), g(x, x1, · · · , xn)
such that S = {(x1, · · · , xn)|(∃x)[f(x, x1, · · · , xn) = g(x, x1, · · · , xn)]}

Now we can prove our result.

Theorem 3. A set S is Diophantine if and only if it is recursively enumerable.

Proof: Suppose S is Diophantine. Then there are polynomials P and Q such
that (x1, · · · , xn) ∈ S if and only if (∃y1, · · · , ym) where
P (x1, · · · , xn, y1, · · · , ym) = Q(x1, · · · , xn, y1, · · · , ym). However, we can
rewrite this using the sequence number theorem to represent y1, · · · , ym and
get the form (∃u)[P (x1, · · · , xn, S(1, u), · · · , S(m,u)) =
Q(x1, · · · , xn, S(1, u), · · · , S(m,u))]. Notice then that this set must be
recursively enumerable by the definition given above.
We now prove the converse. Suppose S is recursively enumerable. By
definition, there are recursive functions f(x, x1, · · · , xn), g(x, x1, · · · , xn) such
that (x1, · · · , xn) ∈ S ⇐⇒ (∃x)[f(x, x1, · · · , xn) = g(x, x1, · · · , xn)]. We can
rewrite this with Diophantine predicates to get the form
(∃x, z)[z = f(x, x1, · · · , xn) ∧ z = g(x, x1, · · · , xn)]. Recall that we have shown
that recursive functions are Diophantine, and so Diophantine Predicates on
recursive functions must give another Diophantine function. Thus, S is
Diophantine.
■

3 The Proof

Our next step is not to describe something called a universal Diophantine set.
It’s a bit annoying to refer to each Diophantine set individually, it would be so
much better to talk about a set that includes all Diophantine sets. As it turns
out, an explicit enumeration of the Diophantine sets is possible. This is not as
surprising, since the coefficients of Diophantine equations are all integers and
Zn is enumerable. We will skip over the actual enumeration here.

There’s a certain question we can ask about this Universal Diophantine set,
and it’s whether or not it itself is a Diophantine set. The answer is yes, and it
is called the Universality Theorem. Let Dn represent the nth Diophantine set.

6



Theorem 4. {(n, x)|x ∈ Dn} is Diophantine.

The actual proof involves the use of the explicit enumeration of the
Diophantine sets. However, it does not provide much insight so it is not
included.

Here’s an outline of the path of proof we take from here to a solution of
Hilbert’s 10th problem. We have been referencing recursive functions a lot but
another name for them are µ-recursive functions, which are equivalent to
turing-computable functions, which is the formalized notion of algorithm that
we will be using. So we define a set V = {n|n /∈ Dn} and show that it is not
Diophantine. Then, we define g which tests if a number is in a Diophantine set
and show that it is not recursive. Using the fact that recursive functions are
equivalent to algorithms, we can proceed by proof by contradiction and
suppose that an algorithm did exist, which would imply g is recursive, which is
a contradiction.
Now we continue down this path.

Theorem 5. V = {n|n /∈ Dn} is not Diophantine

Proof: Suppose for contradiction V is Diophantine, then V = Di for some fixed
i. Since V is Diophantine, then we have i ∈ V ⇐⇒ i ∈ Di but by definition of
V , i ∈ V ⇐⇒ i /∈ Di, which is a contradiction. Thus V is not Diophantine
■
Now we get to the g that was somewhat unclearly described earlier

Theorem 6. Define a function g(n, x) where g(n, x) = 1 if x /∈ Dn and
g(n, x) = 2 if x ∈ Dn. Then g is not recursive.

Proof: Suppose for contradiction that g is recursive, recall that recursive and
Diophantine are equivalent and so g mus also be Diopahntine. Then we can
write g in the form of a Diophantine function, that is of the form
y = g(n, x) ⇐⇒ (∃y1, · · · , ym)[P (n, x, y, y1, · · · , ym) = 0]. We can then write
V as V = {x|(∃y1, · · · , ym)[P (x, x, 1, y1, · · · , ym) = 0]} which implies that V is
Diophantine. This is a contradiction, thus g is not recursive.
■
Now we get to the conclusion.

Theorem 7. Hilbert’s 10th problem is unsolvable.

Proof: Since the universal Diophantine set {(n, x)|x ∈ Dn} is Diophantine, we
can write x ∈ Dn ⇐⇒ (∃z1, · · · , zk)[P (n, x, z1, · · · , zk) = 0]. Now, suppose
for contradiction that there were an algorithm to test if Diophantine equations
had positive integer solutions(i.e. suppose Hilbert’s 10th problem was
solvable). Then, for all n, x we could use this algorithm to test if
P (n, x, z1, · · · , zk) = 0 had a solution, in other words whether x ∈ Dn. Then
g(n, x) would be computable and thus recursive(µ-recursive), which is a
contradiction.

7



■
Even though Hilbert’s 10th problem has been solved, many questions still
remain. For example, we still cannot exactly characterize which Diophantine
equations are undecidable, and although we have gotten closer to an answer
we are still very far. What the solution to Hilbert’s 10th problem does is it
tells us that it is an undecidable problem but this just adds more mystery to
it, we still know very little of each type of Diophantine equation. In fact, we
still do not know how many unknowns is needed exactly to make the problem
undecidable and when it does become decidable.

8



References

[1] Martin Davis. “Hilbert’s 10th Problem is Unsolvable”. In: The American
Mathematical Monthly (1973).

[2] Walter Dean. “Recursive Functions”. In: The Stanford Encyclopedia of
Philosophy (2021).

[3] Yuri Matiyasevich. Matiyasevich’s Theorem. 2008.

[4] Andrew Misner. Hilbert’s 10th Problem. 2013.

9


	Introduction
	Preparation
	The Proof

