
Probabilistically Checkable Proofs

Arindam Kulkarni

§1 Introduction

A probabilistically checkable proof (PCP) is a type of proof that can be checked using a
randomized algorithm. The idea is that a proof is a string that can be read. We can check
specific parts at random of this string, and probabilistically decide whether the proof is correct
or not, through these bounded random parts. Thus, the algorithm is expected to verify/reject
proofs at a decently high probability.

Although you cannot guarantee full accuracy, as we check random parts, you can make
a good predictor, and questions come up such as: How many parts much we check on average?
How accurate is it

There are different number of complexity classes based on how many bits of info we take.
PCP [r(n), q(n)] is a class that refers to problems with probabilistically checkable proofs that
can be verified in polynomial time using at most r(n) random bits through reading a max
of q(n) bits of the proof. Through the PCP theorem, we show that PCP [O(logn), O(1)] = NP .

Probabilistically checkable proofs have verifiers through the form of Turing Machines in
NP . Through reading the input in a string and a string of random bits, the PCP will decide
which of the random bits it wants to check. Through the process, the PCP either accepts the
input x or rejects it if the proof is wrong – only on the knowledge of the q(n) bits read.

§2 Definitions

A language (a decision problem) is said to have a probabilistically checkable proof if it goes as
follows:

1. For all input strings x in the language that should be accepted, there exists a proof
which the verifier accepts for all random strings

2. For all x not in the language, the verifier rejects all proofs over 1
2 the time.

More formally:

1

Arindam Kulkarni

Definition 2.1. A probabilistically checkable proof system for language L is a probabilistic
polynomial-time verifier, denoted M , satisfying:

1. Completeness: For every x ∈ L there exists an oracle πx such that PCP[Mπx where x
accepts] = 1

2. Soundness: For every x /∈ L there exists an oracle πx such that PCP[Mπx where x does
not accept] ≥ 1

2

where the probability is taken over M ’s internal coin tosses

Various complexity measures influence the probabilities of completeness and soundness. In
this definition, we can think of a ”coin toss” as one chance to potentially see a bit. It would
thus count as a part of r(n). The idea of adaptability, the idea of a decision tree in which
bits are read systematically, is measured through the query complexity q(n). Normally, unless
specified we consider a verifier that can consider bits to check as it goes. If not, q = 0, leaving
us with r(n).

Theorem 2.2

The first 2 parts are beyond the scope of this paper to prove, but we will prove the 3rd
statement. Note that poly is polynomial time.

1. If NP ⊆ PCP (o(log), o(log)) then NP = P

2. PCP (poly, poly) = NEXP

3. PCP (0, poly) = NP

Proof. Our q = poly, r = 0. Thus, we are not allowed to flip any counts. However, we have a
polynomial time number of queries. As a result, we can simply read and confirm the proof in
polynomial time, resulting in NP .

This shows that languages in NP are captured through no randomness (r = 0) and a
polynomial number of queries.

§3 PCP Theorem

We must then consider whether there could be a combination of these complexity measures,
still capturing NP . The answer is yes. Through the PCP Theorem, we show that the NP
complexity class has probabilistically checkable proofs that are with constant query complexity
q and logarithmic randomness complexity r. In other words, we can bring the number of
queries the verifier makes down to a constant while just using a logarithmic number of coin
tosses.

The basis for the proof starts with the following theorem:

2

Arindam Kulkarni

Theorem 3.1

PCP (log, poly) ⊆ NP

Proof. This is the class of languages having a PCP system where the verifier has a logarithmic
number of coin tosses, and a polynomial number of queries.

Let L be a language in PCP (log, poly). We can show how we can use the PCP system
in order to have a nondeterministic turing machine Mt be able to decide L in logarithmic time,
consequently showing L is in NP .

Let M be the probabilistic polynomial time machine in the above PCP (log, poly) system for
L. Due to the difficulty, we will only prove this claim for a non-adaptive M . We will have a set
of {a1, ..., am} containing all possible outcomes of the coin tosses made by M (understand that
|ai| = O(log(|x|)) and thus m = 2O(log(|x|)) = poly(|x|)) as 2log ∈ poly. With coin sequence ai,
we will call (q1

i, ..qini
) the queries thatM makes. We must consider that ni could differ by i, and

is polynomial in |x|. Since we are assuming this to be non-adaptive, we have the queries depen-
dent on our input x and the coin sequence ai. They do not depend on q, or our previous queries.

Through our definition of completeness, we know that for every x ∈ L, there exists an
oracle πx for which the PCP system accepts with a probability of 1 if given access to πx.

We then create a witness w, given x ∈ L and an oracle pi. Now we must consider all
possible executions of M given our input x. It is important to note this depends on our coin
tosses, ai. Take the substring of π containing all the bits πi

qj examined by M during these
executions. For each substring, we will thus have an entry as (index, πindex), or effectively,
(query, answer). Thus, our resulting encoded string is Wx

π.

Now, we describe the turing machine that decides L in polynomial time. Given input x,
our turing machine M ′ first guesses the part of the oracle needed by M. Let us call this guess
w. M ′ then makes a simulation of M ’s execution on our input for each ai. Every query made
by M will be answered by M ′ by the answers which are held in w. In addition, if the answer
is not in w, that means M ′ guessed wrong, and it will reject accordingly. This process goes on,
and M ′ will accept if and only if M accepts x for all possible ai.

M ′ creates a simulation of M m times, as this is the number of possibilities in our ran-
domness complexity set ai (which is polynomial in —x—). As M is a polynomial time machine,
M ′ is also a polynomial time since we are effectively multiplying two polynomials.

Now, all that remains to be shown is that L(M ′) = L

3

Arindam Kulkarni

1. For all x ∈ L, we will show that there exists w such that M ′ started with x accepts. By
the completeness condition which follows from the PCP system for L, there exists an
oracle π such that Pr[Mπ accepts] = 1. This shows that for all coin sequences ai, we
have that M accepts x. By definition, we have that that M ′ accepts when guessing Wx

π

2. For all x /∈ L, we show that for all w’s it is true that m′ with x will always reject. By the
soundness condition of the PCP system for L, all oracles π have that Pr[Mπ accepts] ≤ 1

2 .
Therefore, for each π, there is at least one coin sequence ai where the corresponding M
fails to accept x when looking at π. Thus, we have that for at least one Wx

π which M ′
predicts, there will also be at least one coin sequence ai for which M ′ finds a rejecting
state for M . This concludes M rejects x.

This proof effectively states that given a PCP proof with logarithmic randomness, we utilize
the fact that m coinflips means 2m possibilities, meaning 2mlog = poly. This is called “packing”
it into polynomial size and transforming it into an NP-witness for x. Everything the verifier
uses through the coin sequences is bounded by a polynomial.

We then connect this to the nondeterministic turing machine. This will not be shown as it is too
complex, but if one is able to prove NP ⊆ PCP (log, poly) we have that NP = PCP (log, poly).

The goal of the PCP theorem is to replace poly with O(1). It is too complex to prove,
but we will show the proof to wrap up the paper.

Theorem 3.2

NP ⊆ PCP (log,O(1))

This is one of the most complex proofs in theory of computation. In essence, it makes the
bound we found in the previous theorem stronger.

§4 References

1. https://www.cs.jhu.edu/ scheideler/courses/600.471 S05/lecture 8.pdf

2. https://en.wikipedia.org/wiki/PCP theorem

3. https://www.sciencedirect.com/science/article/pii/0012365X9400112V

4

	Introduction
	Definitions
	PCP Theorem
	References

