
QUANTUM COMPUTING: AN INTRODUCTION

ARAV BHATTACHARYA

1. Introduction

Quantum computing is a very common buzzword in the modern-day tech landscape, which
makes sense because it’s a powerful tool that can do everything a classical computer can and
more. And while there are many difficulties in implementing quantum computing which
have prevented it from going into mainstream use at this point, the mathematical theory
behind quantum computing gives us insight into why so many people have predicted that it
will be the dominant computing paradigm in the future. Surprisingly, one does not need an
in-depth prior knowledge of quantum mechanics to learn this rich theory!

In this paper, we will begin by defining basic aspects of quantum computers and providing a
general understanding of each of these aspects. Then, we will prove that quantum computers
can be used to simulate deterministic classical computers, concluding with a look at an
algorithm that runs faster on quantum computers than on classical computers.

2. Background

This paper assumes that the reader is familiar with linear algebra and the theories of
classical computation and complexity. A background in quantum mechanics is not necessary
for understanding this paper.

3. The Qubit

The most basic unit in classical computing is the bit. Similarly, the basic unit of quantum
computers is called the qubit, a portmanteau of the words quantum and bit. We can think
of qubits as mathematical objects used in quantum computing. Although qubits are really
physical objects, treating them as just mathematical objects gives us a basis for studying
them in sufficient detail without delving into the physical complexities of quantum mechanics.

Definition 3.1. A qubit is a basic unit of quantum information: the quantum analogue of
the classic binary bit physically realized with a two-state device.

Though qubits have many differences from bits, there are some basic similarities. Bits are
in one of two states: either 0 or 1. Qubits also have two so-called computational basis states,
|0⟩ and |1⟩. But qubits don’t just have these two states. In simplest terms, qubits are like
unit vectors in a 2-dimensional complex vector space. Thus we have more options for qubits’
states: qubits can take many different states that are linear combinations of |0⟩ and |1⟩ with
magnitude 1, i.e.

α|0⟩+ β|1⟩,
where α, β ∈ C.

Date: December 12, 2022.
1

2 ARAV BHATTACHARYA

But what do these states mean? Unlike classical bits, qubits’ states cannot directly be
measured. When you measure any state of the form α|0⟩+ β|1⟩, the state “collapses” down
to |0⟩ with probability |α|2 or down to |1⟩ with probability |β|2. The state can only collapse
down to either |0⟩ or |1⟩, so the probabilities of collapsing to either computational basis state
must add to 1. Hence we must have that |α|2 + |β|2 = 1. This equation also makes sense
if we think of our qubit as a 2-dimensional vector, since its norm must be equal to 1. To
see the geometric intuition for qubit states, visit [blo] (note that the notation on this site is
slightly different from what’s used in this paper: | ↑⟩ is used in place of |0⟩ and | ↓⟩ is used
in place of |1⟩).

Example. If a qubit takes on either of the computational basis states, it will only collapse
down to its state when measured. Ergo, measuring |1⟩ will always give |1⟩ and measuring
|0⟩ will always output |0⟩.

Example. A qubit may have the state 1√
2
|0⟩+ 1√

2
|1⟩, but you would not be able to tell that

the qubit is in this state. When you measure this qubit, the measurement would be |0⟩ with
probability 1

2
or |1⟩ with probability 1

2
.

4. Multiple Qubits

Now, while one qubit already has many interesting properties, quantum computing relies
on our ability to work with multiple qubits. So how do we represent multiple qubits? To
answer this question, we once again revisit the classical case of multiple bits: n classical bits
can take on one of 2n possible states from the set of n-digit binary strings, which we will
represent as

{0, 1}n = {0n, 0n−11, . . . , 1n}.
Similarly, a quantum computer with n qubits can be represented with a 2n-dimensional

complex vector space, where in each state |ϕ⟩ our qubits can take on any linear combination
of states |x⟩, where x ∈ {0, 1}n. In other words, we can represent |ϕ⟩ as

|ϕ⟩ =
∑

x∈{0,1}n
αx |x⟩.

Now, similar to the case of a single qubit, the probability that we get |x⟩ when we measure
all the qubits in our computer is |αx|2. It follows that∑

x∈{0,1}n
|αx|2 = 1,

which implies that the vector representing the qubits’ states is a unit vector, once again
paralleling the case of a single qubit.

5. Quantum Circuits

Just like in classical computing, we have logic gates and circuits in quantum computing.
However, the gates involved in quantum computing are slightly different from those involved
in classical computing. This is because quantum gates must define a map from one infinite
space of states to another, while classical gates simply define a map from finitely many input
states to finitely many output states. Now, keeping in mind that we only feed unit vectors
as input to quantum gates, we want quantum gates to obey three properties:

(1) Quantum gates should behave linearly on quantum states.

QUANTUM COMPUTING: AN INTRODUCTION 3

(2) The output of a quantum gate should be a unit vector.
(3) An orthogonal set of states should map to an orthogonal set of states.

The first of these properties follows empirically. The reader should justify in their own
mind that properties (2) and (3) are also desirable.

It turns out that we can satisfy all three properties by representing quantum gates with
unitary matrices, i.e. matrices U that satisfy

UHU = I = UUH,

where UH is the Hermitian adjoint matrix of U (see [Axl97] for more information on the
adjoint operator).

Here are some quantum gates that operate on a single qubit:

Example. The quantum equivalent of the classical NOT gate, which operates on a single qubit
system, is represented by the 2 by 2 matrix

X :=

[
0 1
1 0

]
.

Example. The Hadamard transform is given by

H :=
1√
2

[
1 1
1 −1

]
.

The Hadamard gate takes its input halfway to where the NOT gate takes it, though

I = H2 ̸= X.

Example. The phase transforms are given by

P (ψ) =

[
1 0
0 eiψ

]
.

These transforms take a single qubit and rotate the coefficient of |1⟩ by ψ radians in the
complex plane.

The last few examples in this section will be of operators on multiple qubits.

Example. To get an operator that flips the kth qubit in a set of n qubits, we can use a
controlled-not, or CNOT. The CNOT operator can be defined by an 2n by 2n permutation
matrix where only the 2kth and (2k + 1)th columns are swapped from the n by n identity
matrix.

Example. A controlled-U operator on n qubits applies a quantum gate U to the kth qubit
and does nothing to the other qubits. The reader can verify that this operator is unitary.

Example. The quantum Fourier transform (QFT), the quantum analogue of the classical
discrete Fourier transform, is easiest to define by its action on N orthonormal basis states
|0⟩, . . . , |N−1⟩. Letting j be free in {0, . . . , N−1}, we can define QFT as the gate satisfying

|j⟩ 7→ 1√
N

N−1∑
k=0

e2πijk/N |k⟩.

As the astute reader will notice, the QFT is simply the discrete Fourier transform with dif-
ferent notation. Interestingly, QFT can be efficiently decomposed into controlled-Hadamard
gates and controlled-phase gates, though the proof is too technical for this paper. If you are
interested in reading this proof, check out [NC00].

4 ARAV BHATTACHARYA

6. Simulating Classical Computers

The complexity class BQP contains all problems that can be decided by a quantum
computer in polynomial time, within some bounded error. In this section, we prove the
following:

Theorem 6.1. Any classical circuit can be simulated on a quantum computer. In other
words,

P ⊆ BQP.

It seems trivial that we could simulate classical computers on quantum computers. After
all, it seems like we could just measure all of our qubits and then feed them into a classical
circuit. However, we encounter one major obstacle: unitary matrices (and hence quantum
gates) are invertible by definition, but not all classical gates are invertible. Thus we cannot
simply plug qubits into classical gates. As such we must construct a different way to simulate
classical circuits. We will do so using the following lemma, which we will not prove within
this paper.

Lemma 6.2. The classical NAND gate (which is essentially an AND gate followed by a NOT

gate) is a universal gate, meaning that any classical circuit can be simulated (albeit perhaps
really slowly) by applying multiple NAND gates.

Proof of Theorem 6.1. Since we know by the preceding lemma that NAND gates are universal,
we just need to find a way to simulate a NAND gate via a quantum circuit. We can do this
by using a Toffoli gate, which operates on 3 qubits and is defined by the following actions
on computational basis states:

|111⟩ 7→ |110⟩,
|110⟩ 7→ |111⟩,
|x⟩ 7→ |x⟩ ∀x ̸∈ {110, 111}.

The reader can verify that the action of the Toffoli gate on each computational basis state
matches the action of the NAND gate on its analogous classical state. Thus we have shown
that NAND gates can be simulated on quantum computers, and by the universality of NAND
gates we see that we can simulate any classical circuit on a quantum computer. ■

7. Fast Quantum Algorithms

Quantum algorithms aren’t just useful for simulating classical algorithms. Quantum al-
gorithms can also solve certain problems faster than any known classical algorithm. One
problem where this is the case is the problem of prime factorizing an integer. The fastest
known classical factoring algorithm, the general number field sieve, runs in sub-exponential
time (which is slower than polynomial time). However, Shor’s algorithm is a quantum algo-
rithm that runs in polynomial time. In this section, we will give a brief overview of Shor’s
factoring algorithm.

Shor’s factoring algorithm has two parts: a classical part and a quantum part. The
classical part of Shor’s algorithm reduces the factorization of N to a problem about finding
the period of a function, while the quantum part uses QFT to find the period, speeding up
the process of solving the problem of factoring N .
In the classical part of Shor’s algorithm, we guess a candidate a with 1 < a < N that can

help us factor N . We then check if a and N are relatively prime via the Euclidean algorithm.

QUANTUM COMPUTING: AN INTRODUCTION 5

If they are not, we can stop as their common factor divides N . Now comes the quantum
step, where we use the QFT to find the least r such that

ar ≡ 1 mod N.

If ar/2 is a nontrivial root of 1 modulo N , then we know that gcd(ar/2 ± 1, N) are nontrivial
factors of N , so we’re done. Otherwise, we start over with another guess of N .
Shor’s algorithm encapsulates the benefits of quantum computing outside of simply simu-

lating classical computers. And it’s not the only one: quantum search algorithms can search
over an unsorted space in sub-linear time [NC00].

8. Recap

Quantum computing is a powerful tool that could become the standard computing para-
digm of the future. While quantum computing relies heavily on the physics behind quantum
mechanics, a high-level understanding of quantum computing can be gleaned simply through
the use of linear algebra. Quantum computers can simulate classical computers without sig-
nificant slowdown, and seem to be able to solve some problems faster than classical computers
can. Modern cryptography is mainly based on public-key cryptosystems, which all rely on
the difficulty of factoring integers. But due to Shor’s algorithm, current cryptosystems would
be need to be replaced with better (quantum) cryptosystems if quantum computing was to
become widespread.

9. Acknowledgements

The author would like to thank Sherry Sarkar and Simon Rubinstein-Salzedo for insightful
guiding conversations.

References

[Axl97] Sheldon Jay Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer, New
York, 1997. URL: http://linear.axler.net/.

[blo] Bloch sphere representation of quantum states for a spin ½ particle. URL: https://www.st-andrews.
ac.uk/physics/quvis/simulations_html5/sims/blochsphere/blochsphere.html.

[NC00] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge Series
on Information and the Natural Sciences. Cambridge University Press, 2000. URL: https://books.
google.com/books?id=aai-P4V9GJ8C.

Email address: bhattacharya.arav05@gmail.com

http://linear.axler.net/
https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/blochsphere/blochsphere.html
https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/blochsphere/blochsphere.html
https://books.google.com/books?id=aai-P4V9GJ8C
https://books.google.com/books?id=aai-P4V9GJ8C

	1. Introduction
	2. Background
	3. The Qubit
	4. Multiple Qubits
	5. Quantum Circuits
	6. Simulating Classical Computers
	7. Fast Quantum Algorithms
	8. Recap
	9. Acknowledgements
	References

