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1 Introduction

In 1900, David Hilbert published a list of perceived unsolvable questions in

mathematics, the tenth of which was Hilbert’s tenth problem, stating the fol-

lowing (6):

”Given a Diophantine equation with any number of unknown quantities and

with rational integral numerical coefficients: To devise a process according to

which it can be determined in a finite number of operations whether the

equation is solvable in rational integers.”

In other words, Hilbert looked for a solution, such that if given a Diophantine

equation with any number of unknown quantities with rational integral numeri-

cal coefficients: To devise a process according to which it can be determined in a

finite number of operations whether the equation is solvable in rational integers

(1).

Hilbert’s problem is more concerned with deciding whether one or more

solutions exist to a certain set of Diophantine equations. Mathematician The

Yuri Matiyasevich derived that the solution to the problem is negative in 1970,

meaning that there is no algorithm that can be devised to answer the question

(1).

The following paper will explore the definition of Diophantine sets and equa-

tions, along with Matiyasevich’s proof, and overall applications of the problem.

2 Computability theory

In order to make sense of the negative result of Hilbert’s Tenth Problem, we

need to develop a precise notion of algorithms. In the 1930s, the Church-Turing
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thesis proved that every purely mechanical procedure could be carried out by a

Turing Machine, a model of computation.

Definition 1.1: A Turing Machine is an abstract computing machine used

to determine the limitations of what can and cannot be computed.

Hilbert’s Tenth Problem can be rephrased to ask whether there exists a

Turing machine that can solve the decision problem of whether one or more

solutions exist for an input set of polynomial equations.

Definition 1.2: A subset S of N is called recursive if there exists a Turing

Machine accepting a natural number n and is guaranteed to terminate after

running for a finite amount of time, after which it correctly outputs the truth

value(Yes or No) according to whether n S.

Definition 1.3: A subset S of N is called listable or recursively enumerable

if there exists a Turing Machine accepting a natural number n and, if n S, the

algorithm need not be guaranteed to terminate for inputs n S, but must not

give any incorrect answers.

It is clear that recursively enumerable sets are not required to terminate

if the input is not in the solution set S, unlike recursive sets, which always

terminate on any input. However, it is not immediately clear that the set

of recursively enumerable sets that are not also recursive is nonempty. This

property is justified by the following theorem:

Theorem 1.1: A simple set is a set that is both co-infinite and recur-

sively enumerable but any infinite subset of its complement is not recursively

enumerable. Simple sets are not recursive.

Proof : Suppose that S is a simple set, implying that it is both co-infinite

and recursively enumerable.

Now, suppose that S is recursive. Then, there exists an algorithm, a, that

can determine, for any given integer x, whether x is in S or not. Using this

information, the following algorithm can be used to enumerate the elements of

S’:

1. Initialize an empty list L.

2. For each x in the domain of the algorithm, a, if a decides that x is not in

S, append x to L.

3. Output L

Since S’ is infinite, this algorithm will never terminate. However, S is recur-

sively enumerable, meaning that there exists an algorithm that can enumerate
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all of the elements in S in a systematic way, suggesting that this algorithm has

to output L, which poses a contradiction. Therefore, S cannot be recursive.

3 The Halting Problem

The Halting Problem asks if there exists a Turing Machine such that it accepts

a computer program p and integer x and output YES or NO based on whether

the program eventually halts when run on the integer, x.

Theorem 2.1: The Halting Problem is undecidable (cannot be solved by

any Turing machine)

Proof : Suppose there exists a Turing machine M that can solve the Halting

Problem. Then, M can be used to construct a new Turing machine H that takes

a description of a Turing machine M and an integer w as inputs and halts only

if M’ halts when run on w.

Consider the following program P:

1. Input a description of a Turing machine M’ and an input w.

2. Run H on M’ and w.

3. If H halts, halt. Otherwise, loop forever.

If P halts when run on itself, then it must halt when run on H. However, if P

halts when run on H, then H must halt when run on P. This can be summarized

as P(p) will halt if and only if the program P(p) will run forever, which is a

contradictory statement, resulting in the conclusion that The Halting Problem

is undecidable.

Corollary 2.1 Listable sets are not always recursive(i.e. there exists a

listable set that is not recursive

Proof : Consider the set L of all descriptions of Turing machines M such

that M does not halt when run on itself

It is possible to enumerate all of the elements in the set L using the following

algorithm:

1. Initialize an empty list L’.

2. If M does not halt when run on itself, append M to L’.

3. Output L’.
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This algorithm will enumerate all of the elements in the set L’ in a systematic

way, so L is a listable set. However, L is not recursive because the definition

of L depends on the behavior of Turing machines, which is not something that

can be determined algorithmically.

4 An Introduction to Diophantines

The first step to approaching Hilbert’s Tenth Problem is getting a grasp for

the concept of Diophantine equations. In basic terms, a Linear Diophantine

equation (LDE) is an equation with atleast 2 unknowns, such that each unknown

represents an integer value and are each to at most degree of 1.

We can proceed to define Diophantine sets and equations as follows:

Definition 4.1: A set S of ordered n-tuples of positive integers is called a

Diophantine set if there is a polynomial P (xl, ..., xn, y1, ..Ym), wherem ≥ 0, with

integer coefficients such that a given *n-tuple < x1, ..., xn > belongs to S if and

only if there exist positive integers Y1, ..., ym such that P (x1, ..., xn, y1, ..Ym) =

0.

So, S = {< x1, ..., xn > |∃(y1, ..., Ym)[P (x1, ..., xn, y1, ..Ym) = 0}
What are some examples of Diophantine sets that satisfy this definition?

The composite numbers, for one, which can be defined as

S = {x = (y + 1)(z + 1)}

for x ∈ S and y, z ∈ Z
Diophantine equations and closely related to Diophantine sets.

Definition 4.2: Let P (x1, ..., xm) be the polynomial from definition 1.1

with only integer unknown values of x1, ...xm and integer coefficients. If an

equation satisfies this, P (x1, ..., xm) = 0 it is a Diophantine equation. Similarly,

if there is a Diophantine set S as defined in definition 1.1, then set S has a

dimension of m and the polynomial P is the Diophantine representation of the

set S.

And while this defines the Diophantine sets and equations, they have more

properties and operations that can contribute to proving Hilbert’s tenth problem

as negative.

Theorem 4.1 The union of two Diophantine sets of the same dimension is

Diophantine.
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Proof : Say there exist Diophantine sets Sa and Sb such that the two sets

have representations of Pa and Pb. The union of the two Diophantine sets is a

new polynomial Pa · Pb, as Pa · Pb = 0 if and only if Pa = 0 and Pb = 0. Based

on our definition of Diophantine sets, we now know that this is Diophantine.

Theorem 4.2 The intersection of two Diophantine sets is Diophantine.

Proof : Say there exist Diophantine sets Sa and Sb such that the two sets

have representations of Pa and Pb. The intersection of the two Diophantine sets

is a new polynomial (Pa)
2 + (Pb)

2, as (Pa)
2 + (Pb)

2 if and only if Pa = 0 and

Pb = 0. Based on our definition of Diophantine sets, we now know that this is

Diophantine.

Theorem 4.3 All recursively enumerable set in the natural numbers are

Diophantine, and therefore the converse: a subset in the natural numbers is

Diophantine if and only if it is recursively enumerable.

Proof : This theorem is known as the DPRM theorem, named after Mar-

tin Davis, Hilary Putnam, Julia Robinson and Yuri Matiyasevich’s work on

Hilbert’s Tenth Problem. The proof for the theorem itself is very technical,

however we will delve into the basics of it in section 5.

Lemma 4.1 Hilbert’s Tenth problem has a negative answer.

Proof : For the sake of contradiction, let us say that there exists a subset S

of the set integers Z such that S is non-recursive but listable (Corollary 2.1). By

the DPRM theorem, we know that this same subset S is Diophantine as well.

Therefore, we know that there must exist a polynomial P (x1, ..., xn, y1, ..Ym)

such that

S = {< x1, ..., xn > |∃(y1, ..., Ym)[P (x1, ..., xn, y1, ..Ym) = 0}

and P (x1, ..., xn, y1, ..Ym) = 0.

For the sake of contradiction, let’s say that Hilbert’s Tenth Problem actually

has a negative answer. Then, there should be an algorithm that can decide

whether there exists a solution (y1, ..., Ym) in the natural numbers.

Based on this, we would be able to decide if < x1, ..., xn >∈ S, meaning that

S is recursive. Therefore, based on this contradiction, we know that Hilbert’s

tenth problem must have a negative solution, meaning that there is no deciding

algorithm.
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5 DRMP theorem

The following section will work to establish a basic proof and outline of the

DRMP theorem utilized to show that Hilbert’s Tenth Problem is unsolvable.

The DRMP theorem is the most crucial part to the problem besides a basic

definition of Diophantines.

The proof below will include the basics of the proof, not delving too much

into the further complexities of the theorem.

Basic Outline

The proof of the theorem consists of the following:

• Show every listable set is exponential Diophantine

• Show exponentiation is Diophantine

• Show different relations that are Diophantine

6 All listable sets are exponential Diophantine

An exponential Diophantine is a Diophantine set or equation in which the un-

known solutions may also appear in the exponents of the polynomial.

The proof itself is extremely complex, and was proven by Davis, Putnam,

and Robinson in 1960 (2). While the proof will not be shown in this paper,

Davis, Putnam, and Robinson utilized the idea that the listable set S can be

expressed as the linear combination of the products of terms in the form of αβ .

As there are nonrecursive and listable sets, the new listable set can expressed

in terms of a exponential Diophantine equation.

However, their proof brings up other new corollaries relevant to Hilbert’s

Tenth Problem.

Corollary 1 There exists no algorithm that determines whether an expo-

nential Diophantine is unsolvable.

Their proof for the following corollary is similar to Theorem 4.3 which shows

that the solution to Hilbert’s tenth problem is negative.

Research shows that while many exponential Diophantines can be solved

using Størmer’s theorem or trial and error, no specific pattern or algorithm

has been devised to determine whether there exist solutions to an exponential

Diophantine.

Some examples of interesting exponential Diophantines are the Fermat-

Catalan conjecture (4):
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am + bn = ck has only finitely many solutions such that a,b,c are coprime and
1
m + 1

n + 1
k < 1.

and the Ramanujan-Nagell equation (7):

2n − 7 = x2.

7 Exponentiation is Diophantine

To show that exponentiation is Diophantine, we must show that the ordered set

of triples, a, b, c|a = bc is a Diophantine set.

Interestingly, a clever solution to this is to use Pell’s equation of x2−dy2 = 1

for a non-square d in the natural numbers. Robinson’s work on proving that

exponentiation is Diophantine involved Pell’s equation to prove that

”There is a Diophantine set D of pairs (a,b) such that (a, b) ∈ D ⇒ b < aa and

for every positive k, there exists (a, b) ∈ D such that b > ak. (1)”

In this proof, Robinson also implies that not only is exponentiation Dio-

phantine, so are the binomial coefficients, factorials, and primes (2).

Exponential growth as a Diophantine relation is key to the unsolvability of

Hilbert’s Tenth Problem. Constructing a Diophantine such that the solutions

showcase exponential growth would make the problem undecidable by an algo-

rithm. The discovery of this equation allows any exponential Diophantine to

become a linear Diophantine equation, therefore making Hilbert’s Tenth Prob-

lem negative.

8 Hilbert’s Tenth Problem in other rings

While Hilbert’s Tenth Problem originally deals with only integers, the prob-

lem can be extended to a variety of other mathematical rings, each with their

own solutions to the problem. While the problem is undecided in the rational

numbers, it has been solved in other rings.

The table below showcases the solutions to the problem in different rings of

interest.
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HB10 in other rings

Ring Is there a solution

to HB10?

Q(
√
d) (3) yes; negative

Q not known

p-adic (8) yes; positive

Z yes; negative

OK (10) not known

C yes; positive

Z[i] yes; negative

As a generalization for different rings, Harold N. Shapiro and Alexandra

Shlapentokh proved in 1989 that the problem has a negative solution for integer

rings of any algebraic number field such that the Galois group over the rationals

is abelian (11).

The study of Hilbert’s Tenth Problem in different rings extends it to the work

in areas of interest of various number theorists and algebraists, also extending

the applications of the problem itself to different fields of mathematics.

9 Applications

One application of Hilbert’s 10th Problem is in the field of algebraic geometry,

where it can be used to prove the existence of certain types of algebraic varieties

that cannot be described by polynomial equations. Specifically, the proof that

there does not exist an algorithm that can solve Hilbert’s 10th Problem for all

polynomial equations has been used to show that there exist algebraic varieties

that cannot be defined by polynomial equations with integer coefficients (9).

Another application of Hilbert’s 10th Problem is in the field of computational

complexity theory, where it has been used to establish the existence of certain

types of computational problems that are computationally intractable, meaning

it requires a very large amount of computational resources to solve. Specifically,

the proof that there does not exist an algorithm that can solve Hilbert’s 10th

Problem has been used to show that there exist computational problems that

are hard to solve, in the sense that they require a lot of computational resources

to solve, even with the most powerful computational resources.
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