
THE BUSY BEAVER PROBLEM

ANANT ASTHANA

Abstract. In this paper, we introduce the intuition and technicalities behind

the Busy Beaver problem, after which we discuss the implications of Busy
Beaver results to incompleteness. Subsequently, we mention some interest-

ing properties of the Busy Beaver sequence (namely that it is uncomputable).

Finally, we briefly discuss the Ackermann function as well as the inverse Ack-
ermann function.

1. The Intuition

The Theory of Computation is led to the development of the modern-day field of
computer science. Here, we investigate an interesting problem regarding an ancestor
of computers known as Turing machines (TMs); in essence, a Turing machine can
read in input and, for our purposes, write on top of and erase the input, as well
as navigate only along the tape containing the input. Thus, in a sense, the TM is
limited to 1 infinitely long tape extending in both directions.

With these restrictions in mind, we ask the following question:

Question 1. Given a tape with a bunch of 0s initially on it, what is the maximum
running time of any n-state halting TM on that input?

This is a very interesting question that has kept researchers coming back to it
for decades. Of course, there are a number of variants of this problem, as different
metrics for the running time of a TM have been devised, including counting the
number of 1s written on the tape rather than the runtime. However, for the purposes
of this paper, we will consider the question proposed above.

Date: December 12, 2022.
Thanks to Mr. Simon Rubenstein-Salzedo and the Euler Circle institution.

1

2 ANANT ASTHANA

2. Background and Definitions

Definition 1. A Turing machine is a septuple (Q, qo, F,Γ,□,Σ, δ) where

• Q is the set of states
• qo ∈ Q is the starting state
• F ⊂ Q is the set of accepting states
• Γ is the tape alphabet
• □ ∈ Γ is the blank symbol
• Σ ⊂ Γ is the input alphabet
• and δ : Q× Γ× {L,R} → Q is the transition function, where at each step,
we choose to move the head to either the left or right on the tape.

However, this is a formalized version of the intuitive construct proposed in the
first section.

For the sake of the Busy Beaver problem, we assume all TMs to be 1-taped,
although variants such as multitaped TMs or 2-dimensional taped TMs have been
researched.

Typically, we define Turing machines in terms of an algorithm that governs their
transition function δ. As a result, Turing machines can be thought of as simplified
expressions of a computer.

Note that the transition state function for the Turing machines considered in the
Busy Beaver problem take a specific form. Namely, that form is a → bCD or a →
HALT, where

(1) a is the symbol read in the current cell on the input tape
(2) b is the symbol to write in place of the current symbol
(3) C is the next state to move to, and
(4) D is L or R, dictating whether the TM head should move to the left or

right on the tape.

Thus, for a given state of input, depending on the symbol in the current input
tape cell, there are 4n+1 possible instructions. Since the symbol in the current cell
could be 0 or 1, we have (4n+ 1)2 total possible instructions for one state, leading
to (4n+ 1)2n total algorithms on n states.

Definition 2. The runtime of a Turing machine M is denoted by s(M). For Turing
machines that do not halt, we assign s(M) := ∞.

Definition 3. Let T (n) denote the set of Turing machines on n states. Therefore,
|T (n)| = (4n+ 1)2n. Then, we define S : N → N such that

S(n) = max
M∈T (n),s(M) ̸=∞

s(M).

In other words, S(n) is the maximum runtime any n-state halting Turing machine
can have.

THE BUSY BEAVER PROBLEM 3

Current State a b C D
qo 0 1 q1 R
qo 1 1 q1 L
q1 0 1 qo L
q1 1 HALT HALT HALT

Figure 1. A sample transition function that encodes the algo-
rithm of a 2nd Busy Beaver machine.

3. The Problem

The Busy Beaver problem asks the following question:

Question 2. Across all halting 1-tape TMs with Σ = {0, 1}, Γ = {0, 1,□}, and
|Q| = n what is the maximum runtime on the input . . . 000 . . .?

Note that the question above considers only halting TMs. Thus, the maximum
runtime is not allowed to be indefinitely large.

We can also rephrase the Busy Beaver problem in shorter terms:

Question 3. For a given n, what is the value of S(n)?

Remark 1. It’s curious that the solutions to the Busy Beaver numbers are denoted
by the function S(n). This is due to the idea that Radó did not originally refer to
the problem as the Busy Beaver problem, but rather as the shifting problem (since
the Turing machine is essentially shifting back and forth across the tape). Hence,
we use the letter S to denote the Busy Beaver numbers.

Definition 4. Across all halting n-state Turing machines, a TM that with the
greatest runtime is known as an nth Busy Beaver Turing machine. In other words,
if a Turing machine M ∈ T (n) satisfies S(n) = s(M), then M is considered an nth
Busy Beaver Turing machine.

For example, S(1) = 1, S(2) = 6, S(3) = 21, S(4) = 107, S(5) ≥ 4.7 · 107, and
S(6) ≥ 8.6 · 1015 [3]. As one may observe, the maximum runtimes for n-state TMs
increase quite quickly as n increases, even faster than exponentially.

Definition 5. We define the class of Turing machines

BB = {M : M is an nth Busy Beaver machine for some n ∈ N}.

For instance, the transition function in Figure 1 details the transition function
for a 2nd Busy Beaver.

However, determining if a TM is a Busy Beaver is not a simple passtime hobby.
Rather, the Busy Beaver problem has practical implications when it comes to push-
ing the boundary of our current understanding of mathematics.

4 ANANT ASTHANA

4. Beavers and Mathematical Intelligence

Besides increasing popular support for environmentalists, the Busy Beaver prob-
lem also allows us to consider the boundary of what is knowable within a sound
axiomatic system (in other words, an axiomatic system within which provable state-
ments are true). Let’s begin by taking a look at the following statement:

Theorem 4.1. Let S be a sound (thus, consistent) axiomatic system such that the
axioms and rules of S can be expressed in b bits of information. Then, there exists
a constant nS so that any statement of the form

S(n) = k

where n, k ∈ N and n > nS is unprovable in S.

The proof of this theorem warrants mentioning, as it provides the foundation
for the connection between the Busy Beaver problem and a number of currently
unsolved problems.

Proof. Say we have a Turing machine M ∈ T (nS) that does the following: given
an input with all 0s, M runs all possible proofs derived from the axioms of S. If it
ever finds a proof that 1 = 0, then it halts. Of course, we know M will never halt.
However, notice that S itself does not have the necessary axioms to prove that M
never halts, as this would imply S can prove its own consistency, violating Gödel’s
Second Incompleteness Theorem.

Now, consider proving S(n) = k for some n > nS . Assume for the sake of con-
tradiction that it is possible to prove a statement such as the one above. However,
this would mean that S can prove M never halts by simulating M for up to k steps
and confirming that M does indeed fail to halt. This would violate Gödel’s Sec-
ond Incompleteness Theorem, as above. Therefore, it is impossible to prove that
S(n) = k for n > nS and k ∈ N. □

Bhaskarpillai and Chaitin [4] have noted that the value of this constant is actually
nS = b+O(1). Therefore, we now have an upper bound on the values of S(n) that
can be calculated in a specific set of axioms.

For instance, consider the Zermelo-Fraenkel set theory (ZF), in which all con-
structs used in modern-day mathematics can be defined. Stefan O’Rear [5], in 2016,
proved that

Theorem 4.2. There exists a 748-state TM that halts if and only if ZF is incon-
sistent.

Corollary 1. ZF does not have the axiom foundation to prove the value of S(748),
according to Gödel’s Second Incompleteness Theorem. Therefore, nZF = 748.

The theorem above is a clear example of how the Busy Beaver problem provides
insight into the fundamental axioms on which our system of mathematics is built.

Take the Reimann Hypothesis, for example. Mathematicians have been unable
to prove or disprove it. Yet, the answer lies within the reach of a 744-state Busy
Beaver machine [6].

In fact, there are a number of unsolved problems that can be expressed in terms
of the Busy Beaver Problem. Similar cases have been found for the Goldbach and
Collatz Conjectures: an anonymous Github user [7] created a 27th Busy Beaver
machine that halts if and only if the Goldbach conjecture is false, and Pascal Michel

THE BUSY BEAVER PROBLEM 5

showed that the current 5-state TM with maximum runtime ”exhibits behavior
similar to that of the function described in the Collatz conjecture” [2, 8].

What does this mean when it comes to solving unresolved problems? Well,
if some clever mathematician constructs a z-state TM (where z ∈ N) that halts
if and only if Zermelo-Fraenkel set theory is inconsistent, and z < 744, then it
would be impossible to tell if the Reimann hypothesis is true. This is likely the
case, as Aaronson believes that nZF is somewhere around 20 [2]. Likewise, if
z < 27, then Goldbach’s conjecture would lie in the hands of some extremely
clever mathematician. Finally, if z were to hypothetically equal 5, then the Collatz
Conjecture would likely remain a mystery.

6 ANANT ASTHANA

5. The Cool Uncomputability of BB

Here, we discuss arguably the most interesting property of the Busy Beaver
problem.

Firstly, we will show the following basic property of the Busy Beaver numbers:

Theorem 5.1. For any n ∈ N, S(n) ≤ S(n+ 1).

Proof. A proof proposed by the author is as follows: say M is a nth Busy Beaver
TM. Then, let M2 be the TM with n+1 states. However, we can set δ2 = δ. Thus,
s(M) = S(n) = s(M2). In addition, we know that s(M2) ≤ maxM ′∈T (n+1),s(M ′)̸=∞ s(M ′) =
S(n+ 1). Thus, S(n) ≤ S(n+ 1). □

However, as noted in the previous section, it’s clear from the values of the first
few Busy Beaver numbers that the sequence grows very large very quickly. Here,
we look at just how fast they actually grow.

Theorem 5.2. The function S is uncomputable.

Proof. Say we have a function f : N → N so that f(n) ≥ S(n) for all n. Assume
for the sake of contradiction that f(n) is computable. Then, we construct a Turing
machine T to decide if a TM M with n states halts in the following way:

(1) Read in ⟨M⟩.
(2) Simulate M on the input consisting of all 0s, and check the state of the TM

after f(n) moves. If M has halted, then accept. If M has not halted, then
reject, since we know that the maximum runtime for any halting TM with
n states is S(n).

However, since the Halting problem is undecidable, there cannot exist a TM T
that can compute f(n). Therefore, S(n) is uncomputable.

□

A direct result of this theorem is the following:

Corollary 2. BB is undecidable.

In other words, it’s impossible to design a universal algorithm that can determine
if any given TM is a Busy Beaver machine.

To put things into scale, let’s investigate how the properties of the class of Busy
Beavers are different from the class of Ramsey Numbers, which also grow quite fast.

Theorem 5.3. The Ramsey Numbers of the form R(k, k) are computable.

Proof. We prove this theorem by showing that the problem Clique, defined as

Clique = {⟨G, k⟩} : graph G contains a monochromatic clique on k vertices,

is decidable.
We construct a Turing machine to check if a pair ⟨G, k⟩ is in Clique. This

Turing machine would simply consider all possible combinations of k nodes and
consider the edges that connect those nodes. If they form a monochromatic clique,
then accept. If not, then move on to the next combination of k vertices. If no
combination of k vertices forms a clique, then reject.

Note that since there are at most
(
n
k

)
= O(nk) combinations to consider, this

Turing machine runs in polynomial time. Thus, because it is possible to verify that
a pair ⟨G, k⟩ ∈ Clique, Clique ∈ NP, and is therefore decidable.

THE BUSY BEAVER PROBLEM 7

n R(n, n) S(n)
1 1 1
2 2 6
3 6 21
4 18 107
5 43 ≤ R(5, 5) ≤ 49 S(5) ≥ 4.7 · 107
6 102 ≤ R(6, 6) ≤ 165 S(6) ≥ 8.6 · 1015

Figure 2. A tabular representation for easy comparison between
the values of the Ramsey Numbers versus the Busy Beaver Num-
bers.

Hence, the Ramsey Numbers are computable.
□

But what does this really mean? To show the drastic difference between a
computable and non-computable function, we have organized the values in Table 2.
It is impossible to design a TM that can compute the value of S(n) without running
all possible n-state TMs and comparing their runtimes. What this means is that
The Busy Beaver Problem is not even in the class NEXP, the class of problems that
can be solved by an NFA in exponential time. In fact, not even quantum computing
classes would encompass the Busy Beaver problem. What this implies is that the
only way to calculate S(n) for some N is by guessing-and-checking through all
(4n+ 1)2n possible TMs and evaluating the maximum runtime. However, because
such TMs tend to run for extended periods of time, values of S(5) and above have
not been confirmed yet. And, as we saw in the previous section, some values we
will never be able to confirm (at least under the commonly used axiom systems).

Remark 2. Even though this section mentions the ”cool” uncomputability of the
Busy Beaver problem, this is what makes the problem so hard.

8 ANANT ASTHANA

m\n 0 1 2 3 4
0 1 2 3 4 5
1 2 3 4 5 6
2 3 5 7 9 11
3 5 13 29 61 125

4 13 65533 265536 − 3 22
65536 − 3 22

265536 − 3

Figure 3. Some values of the Ackermann-Péter function for small
m,n. Values from [9].

6. The Ackermann Function

In the spirit of discussing fast-growing functions, we proceed to discuss another
bohemoth: the Ackermann function.

The name ”Ackermann function” is a term given to a large family of functions
that are all variants of the same idea. Yet, any recursive function along the lines
of the Ackermann function would serve as one of the fastest-growing computable
functions. One variant, known as the Ackermann-Péter (AP) function, is defined
as follows:

Definition 6. Let A(m,n) denote the value of the Ackermann-Péter function for
m,n ∈ N. Then,

A(m,n) =

n+ 1 m=0

A(m− 1, 1) m > 0 and n = 0

A(m− 1, A(m,n− 1)) m,n > 0.

Some values of A(m,n) for small m,n are included in Figure 3.

Clearly, it is possible to compute values of the AP function: we simply define
a TM that runs the AP recursion on any given input (m,n). However, the AP
function is a special kind of recursive computable function, in the sense that it is
not primitive recursive (meaning one cannot code the AP function using a series of
for loops, such as the Fibonacci recursion).

Thus, if we were to pit the AP function up against the Busy Beaver function,
the latter would clearly outrace the AP function in terms of growth, as it is un-
computable. However, one remarkable thing to note is that the only arithmetic
operation in the AP function is the addition of 1. Thus, its immensely quick
growth comes simply from the addition of a bunch of 1s. This can be explained,
however, by the fact that the runtime of the AP function must be at least as long
as the value of the input (not its length) [10].

6.1. The Inverse Ackermann Function. Even though the AP function itself
grows immensely quickly, its inverse function grows very slowly, in addition to
having some other interesting properties and uses.

Before defining the inverse Ackermann function, however, we must define the
following function:

Definition 7. Let α denote a class of functions, so that for each i ∈ N, αi is a
function in this class. We define these αi functions in the following manner:

• α1(n) =⌈n⌉ for n ≥ 1

THE BUSY BEAVER PROBLEM 9

• αk(1) = 0 for k ≥ 2
• αk(n) = 1 + αk(αk−1(n)) for k, n ≥ 2

It can be shown that αi(n) ≥ αi+1(n) for all n. Furthermore, after testing some
small values, it is not too difficult to see that eventually, regardless of the value of
n, there exists a k such that for all j ≥ k, sequence αj(n) = 3. The single-input
inverse Ackermann function is interested in such a value of k and is defined in the
following manner:

Definition 8. Define the inverse Ackermann function α(n) to be

α(n) = min
αk(n)≤3

k

for any positive integer n.

However, the 2-input inverse Ackermann function is defined in a slightly different
(though similar) manner [12]:

Definition 9. α(m,n) = minαk(n)≤3+m
n
k.

I would like to point out the following property, though a proof of it is outside
of the scope of this paper (further reading at [11]):

Proposition 1. The inverse Ackermann function is computable in linear time.

This property becomes handy, especially in algorithms such as the union-find
path compression, which runs in in inverse Ackermann time. Recall that the union-
find path compression algorithm involves linking two sets of nodes by their roots,
while in the process contracting each of the sets so that each node within each set
points to the node of its respective set.

Say we have a total of n vertices and m queries. Then, it turns out that the
time complexity of a union find path algorithm that runs on this input has time
complexity O((m+ n)α(n))1.

1A summarized proof of this is provided by -is-this-fft- on CodeForces at
https://codeforces.com/blog/entry/98275. However, a more detailed and technical proof

can be found in Tarjan’s article titled Efficiency of a Good But Not Linear Set Union Algorithm.

10 ANANT ASTHANA

7. Acknowledgements

Thanks to Simon Rubinstein-Salzedo and the Euler Circle institution for pro-
viding me with a platform to investigate higher-level mathematics. His valuable
guidance and suggestions were crucial during the process of making this paper. I
would also like to thank Sherry Sarkar for her insightful feedback and suggestions
that helped shape this paper.

References

[1] Aaronson, S. (2020). The busy beaver frontier. ACM SIGACT News, 51(3), 32-54.

[2] Pavlus, J. (2020, December 22). How the slowest computer programs illuminate math’s fun-
damental limits. Quanta Magazine. https://www.quantamagazine.org/the-busy-beaver-game-

illuminates-the-fundamental-limits-of-math-20201210/
[3] Harland, J. (2005, August 16). The Busy Beaver, the Placid Platypus and

other Crazy Creatures. Busy beaver. Retrieved December 12, 2022, from

http://titan.csit.rmit.edu.au/ e24991/busybeaver/seminarAug05.html
[4] Cover, In Gopinath, Bhaskarpillai Chaitin, Gregory. (2003). Computing the Busy Beaver

Function.

[5] O’Rear, Stefan. Construction for the 748-state Turing machine that halts if and
only if ZF set theory is inconsistent. https://github.com/sorear/metamath-turing-

machines/blob/master/zf2.nql

[6] Matiyasevich, Yuri O’Rear, Stefan Aaronson, Scott . Construction for the 744-
state Turing machine that halts if and only if the Reimann Hypothesis is false.

https://github.com/sorear/metamath-turing-machines/blob/master/riemann-matiyasevich-

aaronson.nql
[7] Anonymous. Construction for the 27-state Turing machine

that halts if and only if the Goldbach Conjecture is false.
https://gist.github.com/anonymous/a64213f391339236c2fe31f8749a0df6

[8] Michel, P. Busy beaver competition and Collatz-like problems. Arch Math Logic 32, 351–367

(1993). https://doi.org/10.1007/BF01409968
[9] Ackermann function - Saylor Academy. (n.d.). Retrieved December

12, 2022, from https://resources.saylor.org/wwwresources/archived/site/wp-

content/uploads/2011/06/Ackermann-Function.pdf
[10] Ackermann function - definition and properties. Ackermann Function - Definition

and Properties — Definition Properties. (n.d.). Retrieved December 12, 2022, from

https://www.liquisearch.com/ackermann function/definition and properties#:

:̃text=One%20interesting%20aspect%20of%20the%20Ackermann

%20function%20is,its%20output%2C%20and%20so%20is%20also%20extremely%20huge.
[11] Sureson, C. (2021). The inverse of Ackermann function is computable in linear time. Fun-

damenta Informaticae, 182.

[12] Nivasch , G. (n.d.). Gabriel Nivasch - Inverse Ackermann. Retrieved December 12, 2022,
from https://www.gabrielnivasch.org/fun/inverse-ackermann

Euler Circle, Palo Alto, CA 94306

Email address: stemanant@gmail.com

