
ON THE WORD PROBLEM ON GROUPS

AASHIR MELHOTRA AND ARPIT MITTAL

Abstract. In this paper, we provide a proof for the fact that the word problem for groups
is undecidable. Every finitely generated group G has a presentation P = ⟨S,R⟩, where S is
a finite set of generators, and R is a set of strings, with alphabet with S or the inverse of
an element in S. These strings are deemed identical to the empty string. We provide the
combinatorial group theory HNN (Higman-Neumann-Neumann). We also give examples of
automatic groups and discuss some applications of complexity theory to this topic.

Contents

1. Group Theory Preliminaries 1
2. HNN Extensions 2
3. Modular Machines 2
4. Solvability of the Word Problem 5
5. Undecidability of the Word Problem 6
6. Complexity Theory 8
Acknowledgements 9
References 9

1. Group Theory Preliminaries

We assume introductory group theory at the level of a standard first text, for example,
see [Art15]. We begin with the definition of a presentation.

Definition 1.1. Let G be a group. We say a subset S of G generates G if every element
g ∈ G is a finite product of elements in S or their inverses.

This is an attempt to use the concept of bases in linear algebra to group theory.

Example. If G = Z2 × Z4, then x = (1, 0) and y = (0, 3) will work as generators.

Consider a set S containing elements x1, . . . xn and their corresponding inverses x−1
1 , x−1

2 , . . . x−1
n .

Also consider all finite strings of elements in S (Call this set F i
S). In a group, there are re-

lators that identify certain words in a string of generators. For it to be a group, it must
identify xx−1 with the empty string for all elements x ∈ S. But there could also be other
relations, such as the finite order generators have in finite groups.
We define it more formally:

Definition 1.2. A relator in G is a finite word in S that we identify with the empty word.
Given a set of relators R, we create an equivalence relation ∼ on the set of all finite string
in S such x ∼ y when xy−1 ∈ R

Date: December 11, 2022.
1

2 AASHIR MELHOTRA AND ARPIT MITTAL

Here, y−1 for a word x1x2 . . . xn is x−1
n x−1

n−1 . . . x1.
Let’s now define residually finite groups

Definition 1.3. A group G is residually finite if for every non-identity element g of G,
there exists a finite group Hg and a homomorphism ϕg : G→ Hg such that ϕg(g) ̸= 1.
Equivalently, for every element g, there is a normal subgroup Ng of G such that G/Ng is
finite (or the index [G : Ng] is finite, and g /∈ Ng

2. HNN Extensions

Let αi : Hi → Ki be a family of group isomorphism between subgroups H and K of a
common group G. The following extension of a group is attributed to Graham Higman,
Bernhard Neumann, and Hanna Neumann (the latter two are married!)

Definition 2.1. The HNN-extension of G with respect to αi is the group G
′ with presen-

tation ⟨S ∪
⋃

i∈I pi|R ∪
⋃

i∈I
⋃

h∈Hi
p−1
i h−1piα(h)⟩

Here, the pi’s are additional variables. The added relations mean that h and it’s image
and conjugate with respect to the new ”stable” letters pi.
We now state Britton’s lemma and it’s consequences. A proof of this lemma can be found
in [Cra21].

Lemma 2.2 (Britton’s Lemma). A pinch is a part of a word in S that if of the form
p−1
i vpi, v ∈ Hi or pivp

−1
i , v ∈ Ki, where pi is a stable variable.

Britton’s Lemma states that if a word w in S ∪ pi ∪ p−1
i is equivalent to 1 and contains

piorp
−1
i for some i, then that word must contain a pinch.

This means, we can detect a pinch, reduce it, and repeat. If we reach 1, then we’re done.
If at any point we can’t detect any pinches, we conclude that the word isn’t equivalent to 1.
Here are additional corollaries (from now, we denote G′ as the HNN extension of G).

Proposition 2.3. • G is embedded in G′. This means there exists an injective homo-
morphism ϕ : G→ G′

• A good subgroup is a subgroup A of G such that ϕi(A ∩Hi) = A ∩Ki. For every
group subgroup A, consider Ā ≤ G′ be the subgroup generated by elements of A and
all stable letters pi. Then Ā = A′, and A′ ∩G = A
• In the case where i = {1} and H = K (so ϕ is the identity map), we have p−1gp = g
for g ∈ G ⇐⇒ g ∈ H.

3. Modular Machines

Although they may seem as meaningless abstraction at first, modular machines are one
of the tools used in the revered proof of the Novikov-Boone theorem.

Definition 3.1. A modular machine M contains an integer m > as well as a finite class of
sets of the form (a, b, c, d) where a, b, c ∈ Z such that 0 ≤ a, b, < m and 0 ≤ c < m2, and
d ∈ {L,R}. Each quadruple is determined by a and b.

Since each quadruple is determined by the choices for a, b, each quadruple in the class has
a different pair for (a, b). This machine computes on pairs (x, y) ∈ (N ∪ 0) × (N ∪ 0). The
machine first establishes integers u, v, a, b such that um + a = x and vm + b = y (where

ON THE WORD PROBLEM ON GROUPS 3

0 ≤ a, b < m. Essentially, u and v are the quotients when x and y are divided by m and a
and b are the remainders respectively.

If there is a quadruple in the class with a = x and b = y, the machine sends the pair (x, y)
to the (x′, y′) where we have

(x′, y′) = (um2 + c, v)

if d = R. Otherwise,
(x′, y′) = (u, vm2 + c).

If there is no quadruple with a = x and b = y, the pair (a, b) is a terminal configuration.
A computation on M is a finite sequence of pairs

(x, y) = (x1, y1)→ · · · → (xn, yn) = (x′, y′)

where (x′, y′) is terminal.

Example. Take a modular machine M with m = 2 and the class being

{0, 1, 1, L}, {1, 0, 1, R}.
Let the input be (7, 8). Then, following along with the prior exposition, we have

u(2) + a = 7

and
v(2) + b = 8.

Following the namesake, we solve these modular congruences to get (u, a, v, b) = (3, 1, 4, 0).
There is a quadruple with a = 1 and b = 0, namely {1, 0, 1, R}. Since we have c = 1 and
d = R, we send (7, 8) to

(3(22) + 1, 4) = (13, 4).

Like before, we have (a, b) = (1, 0). So, we send (13, 4) to

(6(22) + 1, 2) = (25, 2).

Following along, we end up with the sequence

(13, 4)→ (25, 2)→ (49, 1).

The pair (49, 1) is terminal as there is no set in the class with a = 1 and b = 1

Remark 3.2. A quick way to calculate the values of (a, b, u, v) for a given (x, y) is the following:

u = x (mod m)

v = y (mod m)

a =
x− u
m

b =
y − v
m

.

Although it doesn’t seem like it, modular machines can do anything that a Turing machine
can.

Theorem 3.3. For all Turing machines T, there exists a modular machine M simulating T.

It seems that the easiest way to prove this is to explicitly construct M. This way, we can
algorithmically find the equivalent modular machine for any Turing machine.

4 AASHIR MELHOTRA AND ARPIT MITTAL

Proof. Let T have alphabet A and states Q. Let m of the modular machine be |A∪Q|. Thus,
we can let A = {1, 2, . . . , n− 1, n} and Q = {n+ 1, n+ 2, . . . ,m− 1,m}.
As we have our m, our task is now to create an equivalent configuration to the Turing

machine. Let

C = aik . . . ai1qabi1 . . . bil .

The data we need to preserve is in chronological order the left characters, state, current
character, and the right characters. To preserve the left/right characters we assign

u =
k∑

j=1

aijm
j−1

v =
l∑

j=1

bijm
j−1.

Thus for the Turing machine configuration C, we create two configurations of the modular
machine to compensate: (um+q, vm+a) and (um+a, vm+q).We use the symbol to denote
if a modular machine configuration is associated with a Turing machine configuration.

To create the class of quadruples associated with the modular machine, we assign for each
transition of T in the form qaq′a′d the modular machine transitions

(q, a, a′m+ q′, D), (q, a, a′m+ q′, d) ∈M.

We have completed our construction of M. All that is left to be shown is that M does
simulate T.
Suppose that (x, y) is a configuration of M and C,C ′ be configurations of T such that

(x, y) ∼ C. We then have.

Claim 3.4. If C → C ′, then (x, y)→ (x′, y′) where (x′, y′) ∼ C ′.

Proof. Let

C = aik . . . ai1qabi1 . . . bil

and

C ′ = aik . . . ai1a
′q′bi1 . . . bil .

Thus there exists a transition quintuple

qaq′a′R

with the associated modular machine quadruples

(q, a, a′m+ q′, d), (q, a, a′m+ q′, d) ∈M.

As (x, y) C, we have (x, y) = (um+ q, vm+ a) or (x, y) = (um+ a, vm+ q). We then have

(x, y)→ (um2 + a′m+ a′, v).

All we have to do to complete the proof of the claim is show that this configuration is one
of the configurations for C ′. We have

u′ =
k∑

j=1

aijm
j + a′m0 = um+ a′

ON THE WORD PROBLEM ON GROUPS 5

v′ =
l∑

j=2

bijm
j−2 = m−1v −m−1bi1 .

From this, we see that

(u′m+ q′, v′m+ bi1) = ((um+ a′)m+ q′,m−1(v − bi1)m+ bi1)

which simplifies to
(um2 + a′m+ q′, v)

completing the proof of the claim. ■

Claim 3.5. It is true that (x, y) is terminal ⇐⇒ C is terminal.

Proof. Take C to be what it was assigned in the prior proof. Then, (x, y) = (um+q, vm+a)
or (x, y) = (um+a, vm+q). The condition for C being terminal is that there is no quintuple
qaq′a′R ∈ T which is equivalent to the condition for (x, y) being terminal which is that there
do not exist quadruples (q, a, a′m+ q′, d), (q, a, a′m+ q′, d) ∈M. ■

The theorem follows from the prior claims. ■

Definition 3.6. If M is a modular machine then M halts on the configuration (x, y) if it is
sent to another configuration.

Theorem 3.7. There exists a modular machine M such that HM = {(x, y)|(x, y) M−→ (0, 0)}
is undecidable.

A proof of this theorem can be found in [Cra21].

4. Solvability of the Word Problem

Armed with group theory jargon from the previous section, we can make our way to one
of the most famous problems in the field of Combinatorical Group Theory.

Problem 4.1 (The Word Problem). Let G be a finite group with a presentation ⟨S|R⟩. Can
we decide for some s ∈ S, s = e ∈ G?

One way to accomplish this is to create some algorithm to do so. The question for whether
we can create this algorithm tells us about the solvability of this problem.

Definition 4.2. LetG be a finite group with presentation ⟨S|R⟩. Then, G has a solvable word
problem if there exists an algorithm which can determine if an element s ∈ S is equivalent
to the trivial element in G.

An initial criticism of this problem is

Complaint 4.3. The solvability of the word problem of a group G with presentation ⟨S|R⟩
may be different for the choice of a different presentation.

By (fill in theorem), all presentations of a finite group are isomorphic. Hence, the solvabil-
ity of the word problem for a group is independent of the choice of presentation. Thus the
complaint is false and the problem is well-defined. It turns out that some types of groups do
have solveable word problems. Some examples of these classes are euclidean groups, finite
groups, and hyperbolic groups.

Theorem 4.4. Free groups with finite presentation are solvable.

6 AASHIR MELHOTRA AND ARPIT MITTAL

Proof. Let G be a free group with finite presentation ⟨S|R⟩. Since G is free, R = ∅. So,
all trivial words are those reducing to the empty word. Hence we propose the following
algorithm to solve the Word Problem on G. This algorithm runs in finite time due to the

Algorithm 1 Solver of the Word Problem over G

Require: Gis free with finite presentation
Ensure: w ∈ S
Reduce w to w′

if w′ = eS then
return true

fact that w is finite. ■

Theorem 4.5. Residually finite groups with finite presentation have a solvable word problem.

Proof. Let G be a residually finite group with finite presentation ⟨S|R⟩. To create an algo-
rithm to determine if w ∈ S is equivalent to eG, we can create two lists. We can make L1 =
words equivalent to the trivial element and L2 = words equivalent to the trivial element. In
our algorithm we will alternate between checking if w ∈ S is in L1 or in L2. Clearly, we have

L1 = Πn
j=1(s

−1
j r

ϵj
ij
sj)

for si ∈ S, rij ∈ R, and ϵi = ±1. Each finite group F can be characterized by its Cayley
table. We can then let L2 be homomorphisms ϕi : G → F that map generators in S to
elements of F and elements of R to eF . Finally, we can create an algorithm to decide this
problem. ■

Algorithm 2 Solver of the Word Problem over G

Require: G is residually finite with finite presentation
Ensure: w ∈ S
isNotFinished← true
counter← 1
while isNotFinished do

if w = L1counter then
isNotFinished← false
return true

else if ϕcounter(w) ̸= 1 then
isNotFinished← false
return false
counter← counter + 1

5. Undecidability of the Word Problem

Our task is to finally prove that the Word Problem is undecidable for arbitrary groups.
We do this by utilizing two claims which are given and proved in the proof of the theorem
below.

Theorem 5.1. The word problem for groups in general is undecidable. In other words, there
exists a group for which the word problem in undecidable.

ON THE WORD PROBLEM ON GROUPS 7

Let M be the corresponding machine that simulates a Turing machine for which the halt-
ing problem is undecidable. That means the the halting set HM = {(a, b)|(a, b)→ (0, 0) after
a finite number of iterations of n}, is undecidable. We shall prove that if a word problem
for a particular finitely presented group G′ is solvable, then HM is decidable, and that will
create a contradiction, which proves our claim.
Consider G = ⟨x, y, t|xy = yx. This is the free group of rank 3, but with x and y allowed to
commute.
Let T ≤ G be equal to ⟨G, t(a, b)|∀a, b ∈ Z⟩.
Here, t(a, b) = x−ay−btxayb.

Also define (for any a, b, P,Q ∈ Z with 0 ≤ a < P and 0 ≤ b < Q) the subgroup GPQ
ab of G

by ⟨G, t(a, b), xP , yQ⟩.
We turn our attention back to M . Let m be the assigned integer for M . We label the
transition quadruples of M as:
{(ai, bici, R)|i ∈ I} ∪ {(aj, bjcj, L)|j ∈ J}.
For i ∈ I, there is a canonical isomorphism ϕi fromGMM

aibi
→ GM21

ci0
by t(ai, bi)→ t(ci, 0), x

M →
xM

2
and yM → y.

A similar isomorphism ψj can be created for GMM
ajbj
→ G1M2

0cj
.

These isomorphisms essentially model the modular machine M (ϕi models an R transition,
and ψj models an L transition).
We use these isomorphisms between subgroups of G to create an HNN-extension of G, de-
noted as G′ (we’ll skip writing formally as it’s obvious from the definition given in section
2). Denote ri, i ∈ I and lj, j ∈ J as the stable variables used in the HNN extension of G into
G′.
A final construction before the first lemma. Let TM = ⟨t(α, β)|(α, β) ∈ HM⟩.

Lemma 5.2. TM = T ′
M ∩G (here T ′

M is generated by t(α, β) and the stable letter ri, lj.)

By Proposition 2.3, it , in general, show that TM is a good subgroup of G with respect to
the HNN extension G′. Since ϕi is a bijective isomorphism, we have:
ϕi(TM ∩GMM

aibi
) = ϕi(Tm) ∩ ϕi(G

MM
aibi

) = ϕi(Tm) ∩GM21
ci0

.
We now recall that ϕi acts like an R transition on t(a, b). This means, ϕi(t(a, b)) = t(a1, b1)
whenever (a, b)→ (a1, b1) via M , and thus
t(a, b) ∈ TM ⇐⇒ (a, b) ∈ HM ⇐⇒ (a1, b1) ∈ HM ⇐⇒ t(a1, b1) ∈ TM .
By this, it follows from ϕi(t(a, b)) = t(a1, b1) that t(a, b) ∈ TM ⇐⇒ t(a1, b1) ∈ TM , hence
ϕi(TM) = TM
A similar argument can be made to show ψj(TM) = TM . Hence the lemma is proven. We
know prove the following:

Lemma 5.3. T ′
M = T ′

Here, T ′ is an HNN extension (a subgroup of G′) that is generated by t(a, b) (a, b ∈ Z),
and the stable letters ri and lj. The inclusion T ′ ⊆ T ′

M is short to prove. This is because
(0, 0) ∈ HM =⇒ t = t(0, 0) ∈ TM . Hence, the generators of T ′ are in T ′

M (namely t, ri’s
and lj’s).
We now prove the other inclusion. Recall for (a.b) ∈ HM we have the following chain as
computations using the modular machine M :
(a, b) = (a1, b1)→ (a2, b2)→ . . .→ (an, bn) = (0, 0)
We use induction on n to show that t(a, b) ∈ T ′, hence proving the equality.

8 AASHIR MELHOTRA AND ARPIT MITTAL

For n = 0, we have (a, b) = (0, 0), and t(a, b) = t(0, 0) = t ∈ T ′.
We now assume the claim for n. That means, we know t(a2, b2) ∈ T ′ whenever (a2, b2) →
. . .→ (0, 0) has length n.
We need to prove that if (a, b) → (a2, b2), then t(a, b) ∈ T ′. Without loss of generality,
assume that (a, b) → (a2, b2) using an transition (ai, bi, ci, R) ∈ M . Then, we have u and v
such that (a, b) = (uM + ai, vM + bi) and (a2, b2) = (uM2 + ci, v). We thus have:

t(a, b) = x−ay−btxayb = x−uM−aiy−vM−bitxuM+aiyvM+bi

= x−uMy−vMx−aiy−bitxaiybixuMyvM

= x−uMy−vM t(ai, bi)x
uMyvM

Since T ′ is an HNN-extension of T with stable letters ri, we have r−1
i T ′ri = T ′. Thus, if we

prove that t(a, b) and t(a2, b2) ∈ T ′ are conjugates with respect to ri, we’ll be done. We thus
have:

r−1
i t(a, b)ri = ϕi(x

−uMy−vM t(ai, bi)x
uMyvM

= x−uM2

y−vt(ci, 0)x
uM2

yv

= x−uM2

y−vx−citxcixuM
2

yv

= x−uM2−ciy−vtxuM
2+ciy−v

= t(uM + ci, v) = t(a2, b2)

We’ve now proved that t(a, b) ∈ T for all (a, b) ∈ HM . This shows that T ′
M ⊆ T ′. With

combination of the trivial T ′ ⊂ T ′
M , we get equality T ′

M = T ′.
We now culminate the proof. Consider the HNN-extension (G′)′ = {G, k|k−1hk = h, h ∈ T ′}.
This is the HNN-extension of G′ with respect to the identity map on T ′. As G′ and T ′ is
finitely presented, so is (G′)′. According to Proposition 2.3, an element g ∈ G′ is in T ′ if and
only if k−1gk = g. Since T ⊂ G′, we thus have k−1t(a, b)k = t(a, b) for all a, b ∈ Z.
From the previous lemmas, we have TM = T ′

M ∩ G and T ′ = T ′
M ; together, they yield

TM = T ′ ∩ G. We have t(a, b) ∈ G (as T ≤ G) and t(a, b) ∈ T ′ (T ′ is an HNN-extension of
T). As t(a, b) ∈ G for all a and b, we have t(a, b) ∈ T ′ if and only if t(a, b) ∈ TM . Hence we
have:

k−1t(a.b)k = t(a, b) ⇐⇒ t(a, b) ∈ T ′ ⇐⇒ t(a, b) ∈ TM ⇐⇒ (a, b) ∈ HM

Suppose, for contradiction, the word problem from (G′)′ is unsolvable. That means the set
W ⊆ (G′)′, defined by W = {w ∈ W |w = 1} (here equality means equivalence), is decidable.
This means that the word problem k−1t(a, b)k = t(a, b) is decidable for all (a, b). This implies
(a, b) ∈ HM for all (a, b), which contradicts the unsolvability of the halting problem. Hence
(G′)′’s word problem is unsolvable.

6. Complexity Theory

We conclude this paper with a brief discussion of the applications of complexity theory to
this problem. For proofs of the theorems given in this section, refer to [Hau]. We start with
a new computational model: the straight-line program.

Definition 6.1. A straight-line program over the alphabet Σ is a context free grammar
S = (V,Σ, S, P). In this quadruple, V is the set of nonterminals, Σ is the set of terminals, S
is the initial nonterminal, and P is the set of productions. Furthermore, it is required that

ON THE WORD PROBLEM ON GROUPS 9

for each v ∈ V, there is exactly one α ∈ (V ∪Σ)∗ such that (v, α) ∈ P and that there are no
cycles in the relation {(v, w) ∈ v × v | ∃α : (v, α) ∈ p, w ∈ alph(α)}

In this definition, we use alph to represent the set of the individual characters of a given
word. We denote the word generated by S as val(S). If v ∈ V is nonterminal, then it
generates one word which we denote as val(S, v). Now, note that a grammar of this type can
be converted into Chomsky Normal Form in polynomial time.

Definition 6.2. The compressible word problem on a finite group G with a finite generating
set Σ is the decision problem asking for a SLP, S, over the terminal alphabet Σ̃, if val(S) = 1)
is valid in G.

Shown in [Hau], we have the following theorems

Theorem 6.3. The problem of being given a group G, automorphisms ϕ1, . . . , ϕn, and an
SLP S over Σ = G∪{t1, t−1

1 , . . . , tn, t1n} and asked to determine if val(S) = 1 ∈ ⟨G, t1, . . . , tn |
gti = ϕi(g)(1 ⩽ i ⩽ n, g ∈ G)⟩ is solvable in polynomial time.

We denote the words as the tji .

Theorem 6.4. The compressible word problem on the free product G1∗G2 is polynomial-time
reducible to the set ({0} × CWP (G1)) ∪ ({1} × CWP (G2)).

Note that in this theorem we are just taking the disjoint union of the two compressable
word problems. We again refer to the interested reader who would like to see the proofs of
these theorems as well as some further results relating complexity theory to HNN-Extensions
to [Hau].

Acknowledgements

Both authors would like to thank Simon Rubinstein-Salzedo for teaching the course “The-
ory of Computation” from which the authors learned about topics in computational and
complexity theory. The first author would like to thank his TA Bryan Li and the second
author would like to thank his TA Lance Mathias for helpful conversations.

References

[Art15] M. Artin. Algebra. Pearson India Education Services Pvt. Limited, 2015.
[Cra21] Will Cravitz. An introduction to the word problem for groups. University of Chicago REU, 2021.
[Hau] Niko Haubold. Compressed word problems in hnn-extensions and amalgamated products. Institut

für Informatik, Universität Leipzig.

Email address: aashir.mehrotra@pathways.in
Email address: arpit.mittal.2.71@gmail.com

	1. Group Theory Preliminaries
	2. HNN Extensions
	3. Modular Machines
	4. Solvability of the Word Problem
	5. Undecidability of the Word Problem
	6. Complexity Theory
	Acknowledgements
	References

