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RAJIV NELAKANTI

1. Introduction

As one might imagine, invariants deal with quantities that do not change under some
algebraic transformations, such as polynomial discriminants. We will consider invariants
under two lights: first with the more concrete manner to gain some footing, and then with
more abstraction to prove some results.

2. Invariants Basics

In order to understand invariants, we need to understand what invariants pertain to.

Definition 2.1. A form of degree r in n variables is a polynomial in n variables such that
each term has degree r: f(x1, . . . , xn) =

∑
i1+...+in=r (ai1...in · xi11 . . . xinn )

Furthermore, we need to pinpoint under what circumstances these invariants remain the
same.

Definition 2.2. A linear change of variables upon form f(x1, . . . , xn) redefines every
variable as xi →

∑n
j=1 αijxj from i = 1 to i = n to create the new form f ′(x1, . . . , xn) =∑

i1+...+in=r (a′i1...in · x
i1
1 . . . x

in
n ) such that ai1...in → a′i1...in according to the matrix α.

Finally, we have enough material to properly define an invariant: a polynomial on the
coefficients of forms that does not change (up to a multiple of the determinant of the matrix
α) despite linear changes of variables.

Definition 2.3. The polynomial φ(. . . , ai1...in , . . .) in coefficients of the form f(x1, . . . , xn) is
called an invariant if, after a linear change of variables into f ′(x1, . . . , xn), φ(. . . , a′i1...in , . . .) =∣∣α∣∣q · φ(. . . , ai1...in , . . .).

We call q the weight of the invariant, where q = 0 implies that the invariant is an absolute
invariant. As an example, the discriminant D = b2 − 4ac of the binary quadratic form
ax2 + bxy + cy2 remains constant under linear transformations of x and y, with weight 0.

It is interesting to wonder how many invariants can be described given a form. In the
case of the binary quadratic form, just the determinant is enough to generate every other
invariant. In general, the algebra of invariants is finitely generated; that is, it only takes
polynomials φ1, . . . , φm to express any invariant of a form. As it turns out, this marvelous
result is the first fundamental theorem of invariant theory, and we will grapple with its proof
after familiarizing ourselves with a more abstract algebra-oriented approach.
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3. First Fundamental Theorem of Invariant Theory

We now address invariants in terms of group theory to outline Hilbert’s proof of the FFT
of Invariant Theory.

Consider vector space V , which we can think of as Cn, along with group G that acts
linearly on V . Under this context, V/G is the space of G-orbits of V . A typical element
would be an equivalence class of elements of V such that v ∈ V generates the class gv : g ∈ G.

We can think of a polynomial function on V as a polynomial in n variables. We say
that polynomial f ∈ C[x1, . . . , xn] is G-invariant if f(gv) = f(v) for all g ∈ G. The G-
invariant functions form a ring, which we call C[V/G] - also known as the polynomials on
the orbit space V/G. These special kinds of polynomials have values over V/G because they
remain constant over each respective equivalence class. Note that this is similar to our use
of homogeneous functions in Pn to make things make sense.

As an example, consider the vector space V = C2 acted on by group G = Z/2Z by
(x, y)→ (−x,−y). Then, C[V/G] = {f(x, y) : f(x, y) = f(−x,−y)} = C[x2, y2, xy].

Theorem 3.1. (Hilbert’s Proof of the FFT) C[V/G] is finitely generated if G is linearly
reductive.

Proof. In order to prove this result, Hilbert defined the Reynolds operator R : C[V ] →
C[V/G], which was essentially a linear projection acting as the identity on C[V/G]. By
definition, given h ∈ C[V/G] and f ∈ C[V ], R(hf) = hR(f). This implies that for every
ideal a ⊂ C[V/G], we have R(C[V ]a) = C[V ]a ∩ C[V/G] = a. Now, take the homogeneous
maximal ideal m0 of C[V ]. By Hilbert’s Basis Theorem, the ideal is finitely generated by
some f1, . . . , fs. Since m0 = R(C[V ]m0), the ideal of C[V/G] is also generated by f1, . . . , fs.
Any homogeneous system of generators of m0 is also a system of generators for C[V/G], thus
proving the theorem and showing that C[V/G] is Noetherian. �
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