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1 Introduction

The Picard group is a group that can be derived from a variety, or more gen-
erally a scheme. It is a generalization of the ideal class group, and it encodes
useful information about the structure from which it is derived. In general,
the definition of the Picard group is scary. It is ”the group of isomorphism
classes of invertible sheafs, or equivalently of line bundles, on a ringed space,
with the group operation being the tensor product.” Fortunately, for smooth
curves, there is another definition, based on divisors, that is much easier to
understand.

2 Divisors

Before defining divisors we must first define prime divisors. A prime divisor
Z on a smooth variety X is a subvariety satisfying the following conditions:

• It is closed, with respect to the Zariski topology.

• It is irreducible— that is it is not the union of smaller subvarieties

• It has codimension one— this means that if D is a closed, irreducible
subvariety of X containing Z, then either D = Z or D = X. This is
analogous to the concept of a maximal ideal.

1



As an example, on a line each distinct point is a prime divisor.

From prime divisors we can define an arbitrary divisor: a divisor of a
variety X is a finite formal sum of prime divisors on X with integer coef-
ficients. For example, if Z1, Z2, and Z3 are prime divisors of X, then the
sum Z1 + 2Z2 − 5Z3 would be a divisor. This sum does not have any geo-
metric meaning; it is a purely formal construction. All these divisors form
an abelian group, denoted Div(X), where the group addition is just adding
corresponding coefficients. Note that this group is not the Picard group—
the Picard group is a quotient of the divisor group.

It is convenient to associate a divisor to each rational function on X.
The divisor of some rational function f on X is defined as follows:

div(f) = (f) =
∑
Z

ordZ(f)Z

The sum is over every prime divisor, and ordZ(f) is (essentially) the multi-
plicity of the zero of f on Z, negative if it has a pole. (The rigorous definition
of the vanishing order is somewhat unintuitive and isn’t really necessary for
this sort of general description of divisors.) Note that this sum is finite,
though we won’t prove it. Any divisor of the form (f) for some function
is called a principal divisor. This is clearly analogous with principal ide-
als. The principal divisors form a (normal) subgroup of the divisor group, as
(f) + (g) = (fg) and −(f) = ( 1

f
). That group is denoted Princ(x).

3 The Picard Group

Finally, we have enough resources to define the Picard group. In terms of
the groups described above, the definition is simple:

Pic(X) =
Div(X)

Princ(x)

Again, there is a clear analogy with the ideal class group, not surprisingly
as the Picard group is in many senses a broader definition of the ideal class
group. From the definition we can derive the Picard group of some basic
varieties:

Example: Pic(An) = 0 for n ≥ 1. This result is due to the fact that
every subvariety of codimension one can be defined by a single polynomial.
Strictly speaking it takes more ring theory than we covered to prove that.
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Example: From knowing the Picard groups of affine space we can find
the Picard groups of projective space as well. Consider the general sequence

Z→ Pic(X)→ Pic(X\Z)

where Z is some prime divisor. The first map is given by 1 7→ Z. The
second map is given by D 7→ D ∩ (X\Z). (If D is not a prime divisor then
the intersection is distributed to each prime divisor in the formal sum for D
so that the map is well-defined.) It is not difficult to check that each map
is a homomorphism. Furthermore, one can show that the map is exact,
meaning that the image of each map is the kernel of the succeeding one: the
image of the first map is just everything of the form kZ for some integer k.
That is also the kernel of the second map, since clearly Z ∩ (X\Z) = ∅, and
any other prime divisor must not be affected much by the mapping X\Z or
else it would intersect too much with Z and hence not be prime. At this
point it is not clear how this sequence tells us the Picard group of projective
space. To do that, take X = Pn and Z = Pn−1. Pn−1 is a subvariety because
of the decomposition Pn = An t Pn−1, and it a prime divisor because it is
irreducible, has codimension one, and, since it is the vanishing set of the
homogenous polynomial f(x0 : x1 : ... : xn) = x0, it is closed. (When writing
Pn = An t Pn−1, the patch equivalent to Pn−1 is defined as the patch where
x0 = 0.) Again because of the decomposition Pn = An t Pn−1, X\Z = An.
Now the sequence from above becomes

Z→ Pic(Pn)→ Pic(An)

Since Pic(An) = 0, the kernel of the second map must be all of Pic(Pn), so
since the map is exact Pic(Pn) ∼= ker(f1) ∼= Z.

Example: As a final example, when considering the Picard group of an
elliptic curve over an algebraically closed field, we can recover the standard
group law for elliptic curves. Let E be an elliptic curve over some alge-
braically closed field k. Though typically elliptic curves are considered over
projective space, here it is more convenient to consider E as an affine variety.
If we were to take E as a projective variety, we would have to account for
poles of polynomials. In affine space polynomials (and in particular lines) do
not have poles, so we can circumvent that trouble. Beginning the calcula-
tion, the prime divisors of this elliptic curve are all of the individual points
on the curve. Thus, the divisor group is all the finite formal sums of these
points. To compute the Picard group, we have to find which of these sums
are principal divisors. If a set of points of the elliptic curve all lie on one
polynomial, then the sum of those points (considering multiplicity) must is
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the principal divisor generated by that polynomial. In particular, the sum of
all the points on a single line is a principal divisor. If P is a point on the curve
and P̄ is the reflection of that point over the x-axis, then the line passing
through P and P̄ does not pass through any other points. (The third point of
intersection guaranteed by Bézout’s Theorem would be the point at infinity,
which is not on our affine curve.) Hence, in the Picard group, P + P̄ = 0, or
−P = P̄ . Using that relation, we can rewrite any sum of points as a sum of
points with positive coefficients. As a corollary, a principal divisor generated
by any rational function can be rewritten as a principal divisor with posi-
tive coefficients, i.e. as a principal divisor generated by a polynomial. Using
that property, we can prove that no point on the affine curve behaves as the
identity. As the elliptic curve is defined over an algebraically closed field,
Bézout’s theorem tells us that any polynomial of degree n that intersects the
curve must do so exactly 3n times (considering multiplicity). However, some
of those intersections might be points at infinity, which are not part of the
affine curve that we are considering. Fortunately, an elliptic curve can only
have one point at infinity, so a polynomial of degree n must intersect the
curve at least 3n− 1 times. Importantly, any polynomial must intersect the
curve at least twice, so no single point is a principal divisor and hence no
single point behaves as the identity in the Picard group. Finally, the addition
formula of two points follows from considering the principal divisors gener-
ated by a line. If the line intersects the curve only twice, then we recover
the aforementioned formula for −P . So here we assume the line intersects
the curve thrice. Say those points of intersection are P1, P2, and P3. Then
P1 + P2 + P3 = 0, or P1 + P2 = −P3 = P̄3. That is exactly the definition
of the sum of two points in the usual elliptic curve group law. Furthermore,
using that formula we can reduce any formal sum of points to either a single
point or 0. Thus every element of the Picard group (except for 0) is actually
a single point on the elliptic curve. (Note that in deriving this formula we see
another advantage of considering an affine curve over the projective curve:
on a projective elliptic curve, we would get P1 +P2 +P3− 3P∞ = 0, which is
only helpful if one proves that P∞ = 0. For an affine elliptic curve, we don’t
need to prove that P∞ = 0; we can simply define P∞ to be an extension of
the curve that corresponds to the element 0 of the Picard group.)

4 Resources

https://www.math.ucdavis.edu/~osserman/classes/248A-F09/divisors.

pdf
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https://homepages.warwick.ac.uk/~maseap/arith/notes/picard.

pdf

http://math.stanford.edu/~vakil/0708-216/216class2829.pdf
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