DEDEKIND DOMAINS
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1. BACKGROUND

Definition 1.1. An integral domain is a commutative ring with an identity and no
zero divisors.

Definition 1.2. An integrally closed domain is an integral domain whose fraction
field is itself.

Definition 1.3. A Noetherian ring is a ring such that every ideal is finitely generated,
its ideals satisfy the ascending chain condition (if Iy C I C ... is an ascending chain of
ideals of R, then there exists a positive integer N such that for all m,n > N, I, = I,,),

and given a nonempty set S of ideals of R, S has a mazimal element (i.e. there exists
I €S such that for all J € S, I ¢ J).

2. DEDEKIND DOMAIN

Definition 2.1. An integral domain R is a Dedekind Domain if it is Noetherian of
dimension 1, and for all mazimal ideals P of R, the localization R, is a reqular local ring.

An alternate, and simpler, definition is the following:

Definition 2.2. A domain B is a Dedekind Domain iff:
(1) B is Noetherian
(2) B is integrally closed
(3) dim(B) =1 (which means nonzero prime ideals are mazximal)

An example of a Dedekind domain is Z, the set of integers. Any principal ideal domain
is a Dedekind domain because it is integrally closed and the nonzero prime ideals are
maximal.

Lemma 2.0.1. Prime Avoidance Lemma Let Py, P, ..., P, with s > 2 be ideals of
a ring R with Py and P, not necessarily prime, but Ps, ..., Ps prime. Now let I be any
ideal of R. The idea is that if you can avoid each P; individually, i.e. for each j, find an
element in I but not in P;, then you can avoid all of the P; simultaneously, i.e. find a
single element in I that it is in none of the P;.

Proof. (Sketch) We will prove the contrapositive: if I C U;_, P;, then for some i, I C P,.
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(1) Suppose the result is false. Without loss of generality, assume there exists a; € [
without a; GB, but a; €P1U"'UB_1UH+1U"'UPS.

(2) Prove for s = 2.

(3) Assume s > 2, and observe ajas...as1 € PLN---NPs 1, butas & PLU---UPs ;.
Let a = (ajay...as—1) +as € PLU---UPs_q. Showthat a€ [,a ¢ PLU---U P,
a contradiction.

O

Theorem 2.1. Let B be a Dedekind domain with finitely many mazximal ideals. Then B
1s a PID.

Proof. Let M, ..., M, be maximal ideals of B. By the prime avoidance lemma, M; is
not contained in M7 U My U --- U M, and there exists ¢t € M; such that ¢ ¢ M} and
t & M; for i > 2. Now consider the ideal tB. This factors as a product of maximal ideals.
Thus, there are integers e; > 0 such that tB = M. ..M;g. For i > 2, if e; > 1, then
tB C M C M,;, which says t € M;. Since this is false, e; = 0 for i > 2. Hence, tB = M;".
Since t € M2, e; < 2. Hence, e; = 1 and tB = M. Therefore, M is principal. Similarly,
each of the M; is principal. Finally, since every nonzero ideal of B is a product of maximal
ideals, each ideal is principal. O

Now, recall that the product of ideals contain all finite sums of elements in the ideals.

Proposition 2.1.1. If I is a nonzero ideal of the Noetherian integral domain R, then I
contains a product of nonzero prime ideals.

Proof. Suppose not. If S is the set of all nonzero ideals that do not contain a product of
nonzero prime ideals, then as R is Noetherian, S has a maximal element J, and J cannot
be prime because it is in .S. Hence, there exists a,b € R such that a,b & J, but ab € J.
By maximality of J, ideals J + Ra, J + Rb each contain product of nonzero prime ideals,
so hence so does their product (J + Ra)(J + Rb) C J + Rab = J. Contradiction. O

Corollary 2.1.1. If I is an ideal of the Noetherian ring R (not necessarily an integral
domain), then I contains a product of prime ideals.

Proof. Repeat the above proof with “nonzero” omitted. O



