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1. Background

Definition 1.1. An integral domain is a commutative ring with an identity and no
zero divisors.

Definition 1.2. An integrally closed domain is an integral domain whose fraction
field is itself.

Definition 1.3. A Noetherian ring is a ring such that every ideal is finitely generated,
its ideals satisfy the ascending chain condition (if I1 ⊆ I2 ⊆ . . . is an ascending chain of
ideals of R, then there exists a positive integer N such that for all m,n > N , Im = In),
and given a nonempty set S of ideals of R, S has a maximal element (i.e. there exists
I ∈ S such that for all J ∈ S, I 6⊂ J).

2. Dedekind Domain

Definition 2.1. An integral domain R is a Dedekind Domain if it is Noetherian of
dimension 1, and for all maximal ideals P of R, the localization Rp is a regular local ring.

An alternate, and simpler, definition is the following:

Definition 2.2. A domain B is a Dedekind Domain iff:

(1) B is Noetherian
(2) B is integrally closed
(3) dim(B) = 1 (which means nonzero prime ideals are maximal)

An example of a Dedekind domain is Z, the set of integers. Any principal ideal domain
is a Dedekind domain because it is integrally closed and the nonzero prime ideals are
maximal.

Lemma 2.0.1. Prime Avoidance Lemma Let P1, P2, . . . , Ps with s ≥ 2 be ideals of
a ring R with P1 and P2 not necessarily prime, but P3, . . . , Ps prime. Now let I be any
ideal of R. The idea is that if you can avoid each Pj individually, i.e. for each j, find an
element in I but not in Pj, then you can avoid all of the Pj simultaneously, i.e. find a
single element in I that it is in none of the Pj.

Proof. (Sketch) We will prove the contrapositive: if I ⊆ ∪si=1Pi, then for some i, I ⊆ Pi.
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(1) Suppose the result is false. Without loss of generality, assume there exists ai ∈ I
without ai ∈ Pi, but ai 6∈ P1 ∪ · · · ∪ Pi−1 ∪ Pi+1 ∪ · · · ∪ Ps.

(2) Prove for s = 2.
(3) Assume s > 2, and observe a1a2 . . . as−1 ∈ P1∩ · · ·∩Ps−1, but as 6∈ P1∪ · · ·∪Ps−1.

Let a = (a1a2 . . . as−1) + as 6∈ P1 ∪ · · · ∪ Ps−1. Show that a ∈ I, a 6∈ P1 ∪ · · · ∪ Ps,
a contradiction.

�

Theorem 2.1. Let B be a Dedekind domain with finitely many maximal ideals. Then B
is a PID.

Proof. Let M1, . . . ,Mg be maximal ideals of B. By the prime avoidance lemma, M1 is
not contained in M2

1 ∪ M2 ∪ · · · ∪ Mg and there exists t ∈ M1 such that t 6∈ M2
1 and

t 6∈Mi for i ≥ 2. Now consider the ideal tB. This factors as a product of maximal ideals.
Thus, there are integers ei ≥ 0 such that tB = M e1

1 . . .M
eg
g . For i ≥ 2, if e1 ≥ 1, then

tB ⊆M ei
i ⊆Mi, which says t ∈Mi. Since this is false, ei = 0 for i ≥ 2. Hence, tB = M e1

1 .
Since t 6∈M2

1 , e1 < 2. Hence, e1 = 1 and tB = M1. Therefore, M1 is principal. Similarly,
each of the Mi is principal. Finally, since every nonzero ideal of B is a product of maximal
ideals, each ideal is principal. �

Now, recall that the product of ideals contain all finite sums of elements in the ideals.

Proposition 2.1.1. If I is a nonzero ideal of the Noetherian integral domain R, then I
contains a product of nonzero prime ideals.

Proof. Suppose not. If S is the set of all nonzero ideals that do not contain a product of
nonzero prime ideals, then as R is Noetherian, S has a maximal element J , and J cannot
be prime because it is in S. Hence, there exists a, b ∈ R such that a, b 6∈ J , but ab ∈ J .
By maximality of J , ideals J + Ra, J + Rb each contain product of nonzero prime ideals,
so hence so does their product (J + Ra)(J + Rb) ⊆ J + Rab = J . Contradiction. �

Corollary 2.1.1. If I is an ideal of the Noetherian ring R (not necessarily an integral
domain), then I contains a product of prime ideals.

Proof. Repeat the above proof with “nonzero” omitted. �


