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1. Introduction to Grassmannians

As we know, projective space Pn is defined as the set of lines through the origin in n + 1
dimensions. This definition, however, can be further generalized. Instead of lines through
the origin, we can use the set of k-dimensional planes through the origin. These sets are
called Grassmannians.

Definition 1.1. A Grassmannian G(k, n) is the set of k-dimensional planes through the
origin in n-dimensional space.

Thus, the projective space Pn is also G(1, n + 1).

2. Wedge Products and the Exterior Power

It would be helpful to visualize Grassmannian space in terms of projective space. To do
this, we must first define the wedge product.

Definition 2.1. The wedge product of two vectors is defined as an operation with the
following properties:

1. a ∧ a = 0
2. a ∧ b = −b ∧ a.
3. (a ∧ b) ∧ c = a ∧ (b ∧ c)
4. a ∧ (b + c) = a ∧ b + a ∧ c
5. ka ∧ b = k(a ∧ b) = a ∧ kb

Definition 2.2. The wedge product of two vectors a∧b is a simple bivector, or, alternatively,
a 2-blade.

A simple bivector is composed of a direction (a two-dimensional subspace) and a mag-
nitude. Similar to vectors, simple bivectors can be multiplied by constants, scaling the
magnitude. They can also be added together, satisfying Properties 1, 2, and 4 of the wedge
product in Definition 2.1.

The closure of the simple bivectors in Rn, under both scalar multiplication and addition,
is the exterior power Λ2(Rn). Not all elements of this closure are simple bivectors.

Example. In Λ2(R4), given basis u1, u2, u3, u4, the element (u1 ∧ u2) + (u3 ∧ u4) cannot be
expressed as a wedge product, and thus is a bivector that is not simple.

Proposition 2.3. Λ2(R4) is a vector space with dimension 6.
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Proof. By definition, all bivectors can be written as the linear combination of simple bivec-
tors. All simple bivectors in Λ2(R4) can be written as (c1u1 + c2u2 + c3u3 + c4u4) ∧ (c5u1 +
c6u2 +c7u3 +c8u4) where each ci is a scalar. Using Property 4, the distributive property, and
property 2, the anticommutative property, we get a linear combination of (u1∧u1), (u2∧u2),
(u3 ∧ u3), (u4 ∧ u4), (u1 ∧ u2), (u2 ∧ u3), (u3 ∧ u4), (u1 ∧ u4), (u1 ∧ u3), and (u2 ∧ u4). By
property 1, the first four terms go to zero, leaving the other six. Because all elements of
Λ2(R4) can be written as linear combinations of these six elements, and all the elements are
linearly independent, these six form a basis. Thus, Λ2(R4) has a basis of size 6, and also
dimension 6.

�

We can extend the definition of a simple bivector to more dimensions.

Definition 2.4. The wedge product of k vectors is a k-blade (simple k-vector). Similar to
simple bivectors, they have a direction (the k-dimensional subspace containing them), and
a scalar magnitude.

Like simple bivectors, the set of k-blades also has an exterior power.

Definition 2.5. The closure of k-blades in Rn is the exterior power Λk(Rn).

This space, like Λ2(Rn), has elements that are not k-blades, however, all elements are
linear combinations of k-blades, leading to a result similar to Proposition 2.3.

Proposition 2.6. Λk(Rn) is a vector space with dimension
(
n
k

)
.

The proof of this is quite similar to Proposition 2.3, with the set of wedge products of
each k-sized subset of the basis vectors of Rn forming a basis for Λk(Rn). There are

(
n
k

)
such

subsets, and thus the space has dimension
(
n
k

)
. This means that Λk(Rn) is isomorphic to

R(n
k)

3. The Plücker embedding

Given the fact that the exterior power Λk(Rn) contains elements consisting of a k-plane
through the origin (k-dimensional subspace) and a scalar, it is easy to see a possible con-
nection to Grassmannians. To understand the relationship clearly, consider the projective
space, P(Λk(Rn)). As points in projective space are invariant to scaling, the scale factor in
the k-blade disappears, leaving only the k-plane. This creates a direct map from the Grass-
mannian to P(Λk(Rn)). The image of this map are the projections of the k-blades, however,
recall that not all k-vectors in Λk(Rn) are k-blades. Thus, the full map G(k, n)→ P(Λk(Rn))
is only an injective map, not a bijective one. This map is the Plücker embedding. The coef-
ficients of the mapping of a Grassmannian point P with respect to the basis of Λk(Rn) are
the Plücker coordinates of P .

Given that Λk(Rn) is isomorphic to R(n
k) by Proposition 2.6, P(Λk(Rn)) is isomorphic to

P(n
k)−1. Because of this, elements of P(Λk(Rn)) have coordinates in P(n

k)−1. The Plücker

embedding then becomes a map G(k, n) → P(n
k)−1, and the Plücker coordinates are simply

the coefficients of the resulting vector.

Remark 3.1. Because the Plücker coordinates exist in projective space, they are only deter-
mined up to a scale factor.
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3.1. Calculation of the Plücker Embedding. To use the Plücker embedding on a point G
in Grassmannian space, take a basis of the k-dimensional plane. This basis can be represented
as a n× k matrix, where the matrix’s column space is G. The k × k minors of this matrix,

give us coordinates in R(n
k). Because each element of the matrix can be multiplied by a

constant while still spanning the same point in Grasmannian space, these coordinates are

points in P(n
k)−1.

The Plücker coordinates do also satisfy certain quadratic relations, known as the Plücker
relations. Points in P(Λk(Rn)) that satisfy the relations make up the image of Plücker
embedding - namely, the resulting k-vector must be a k-blade. These relations, in fact,

provide an alternate definition for a k-blade. For all points in P(n
k)−1 satisfying these relations,

there is a bijective map from G(k, n).

4. Flags and Schubert Cells

A major component of the study of Grassmannians is through subdivisions known as
Schubert cells. In order to define Schubert cells, however, we first need to define flags.

Definition 4.1. A flag is a set of nested linear subspaces A1 ⊂ A2 ⊂ ... ⊂ An of a vector
space V such that dim(An) < dim(An+1) for all n.

A Schubert cell can be defined as a subset of a Grassmannian whose elements intersect a
flag in a certain way.

Definition 4.2. Given a certain flagA : A1 ⊂ A2 ⊂ ... ⊂ Ak, where dim(Ak) ≤ n and a
sequence of integers 0leqa1 ≤ a2... ≤ ak, its corresponding Schubert cell in G(k, n) is the
subset consisting of all points L such that dim(L ∩ Ai) ≥ ai for i = 1, 2, ..., k.

If instead dim(L ∩ Ai) = ai, those points form an open Schubert cell. Open Schubert
cells are a generalized form of the affine patches in projective space - each of these open
cells is isomorphic an affine space. Also, similar to the affine patches, for a given flag, the
Grassmannian can be represented as the disjoint union of all Schubert cells in the flag.

Schubert cells are important to enumerative geometry, which is an extension of the study
of intersections.Their study, known as Schubert calculus, is a part of the solution to Hilbert’s
fifteenth problem - to provide a rigorous formalization of enumerative geometry. The problem
is currently partially solved, with Schubert calculus as an integral part of this solution,

5. The Amplituhedron

The concept of a convex polygon’s interior can be defined in the projective plane P2

as the projection of all possible linear combinations of the vertices. This definition can be
generalized to all projective space, as well as to the Grassmannian, using each of the ’vertices’
of the polygon in P(Λk(Rn)). The Tree Amplituhedron, given a set of linearly independent
k-blades, consists of all k-blades which are positive linear combinations of the elements of
the set. The Tree Amplituhedron has uses in modern advanced physics.
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