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1 Introduction
Tropical Algebra and Geometry are relatively newly developed fields of mathematics. Introduced
by Hungarian-born Brazilian mathematician Imre Simon, the French mathematicians decided to
name the field tropically, their image of Brazil simply constituting with the word tropical. In this
paper, we will introduce the basics of tropical algebra and geometry.

2 Basics: Tropical Arithmetic

2.1 Operations
Let us start by defining the tropical world. The tropical semifield in defined to be (R∪−∞,⊕,�).
We are working with the real numbers and -∞ with the tropical addition and multiplication
operations. We redefine addition and multiplication as follows:

x⊕ y := max(x, y)

x� y := x+ y

So the tropical sum is the maximum and the tropical product is the sum. For example,

2⊕ 9 = 9

2� 9 = 11

Logically, after defining tropical addition and multiplication we will look towards a tropical
subtraction and division. However, tropical subtraction would be ill defined. For example,say we
want to find 5	 6. Let us start by assuming it equals x. Then, 5	 6 = x and therefore x⊕ 6 = 5.
Since we have defined tropical addition as the maximum, there exists no x for which this equation
is true and therefore no defined quotient. Division, however, is well-defined.

2.2 Properties
Both tropical addition and multiplication is commutative. I.E.

x⊕ y = y ⊕ x

x� y = y � x

In addition, tropical multiplication is distributive over tropical addition. I.E.

a� (b⊕ c) = a� b⊕ a� c

Tropical arithmetic follows the usual order of operations and therefore tropical multiplication
comes before tropical addition. Both operations also have identity elements:

x⊕−∞ = x

x� 0 = x
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2.3 Tropical Polynomials
Let us start by letting x1, . . . , xn be variables in the tropical semifield. A tropical monomial is
any product of these variables, where repetition is allowed, much like what we are used to.We can
use the common notation of variables written to exponents, just remember that we are referring
to tropical multiplication. So, for example,

x1 � x3 � x3 � x2 � x4 � x1 � x1 � x2 = x3
1x

2
2x

2
3x4.

Note that this is not restricted to positive exponents (remember tropical division is defined). Also
note that this tropical monomial is a linear function with integer coefficients in classical arithmetic
as tropical multiplication is classical addition. Naturally it follows that a tropical polynomial is a
combination of tropical monomials:

p(x1, . . . , xn) = a� xi1
1 xi2

2 . . . xin
n ⊕ b� xj1

1 xj2
2 . . . xjn

n ⊕ . . .

where coefficients a, b, . . . are real numbers and i1, j1, . . . are integers. A tropical polynomial is a
function Rn → R. If we convert the tropical polynomial to include only classical operations, we
get the maximum of a finite collection of linear functions.

p(x1, . . . , xn) = max(a+ i1x1 + · · ·+ inxn, b+ j1x1 + · · ·+ jnxn, . . . ).

Proposition 1. The tropical polynomials in n variables x1, . . . , xn are precisely the piecewise-linear
concave functions on Rn with integer coefficients.

The important thing to note about tropical polynomials is that each tropical polynomial func-
tion can be written uniquely as a product of tropical linear functions. So the Fundamental Theorem
of Algebra holds in the tropical world. However, this is referring to functions. Multiple polynomi-
als can be represented the same function. Therefore, each polynomial individually will not have
a unique factorization but rather each polynomial can be written as an equivalent polynomial,
representing the same function, that can be factored into linear factors. For example, the following
equivalent polynomials (representing the same function) have the same factorization:

x2 ⊕ 17� x⊕ 2 = x2 ⊕ 1� x⊕ 2 = (x⊕ 1)2

Unique factorization of polynomials no longer holds in two or more variables.

2.4 Tropical Algebra’s Binomial Theorem
The coefficients for the polynomials generated by any (a ⊕ b)n will all be zero. This is because
our tropical sum is the maximum and therefore having multiple of the same term cannot alter the
tropical sum. This neat fact for binomial expansion leads to a favorable result- the freshman’s
dream which states

(x⊕ y)n = xn ⊕ yn

To see this, we can look at the expansion of (x⊕ y)3.

(x⊕ y)3 = (x⊕ y)� (x⊕ y)� (x⊕ y)

= 0� x3 ⊕ 0� x2y ⊕ 0� xy2 ⊕ 0� y3

Since tropical multiplication is just normal addition, we can drop the zeros.

(x⊕ y)3 = x3 ⊕ x2y ⊕ xy2 ⊕ y3

Now notice that the maximum of x3 ⊕ x2y ⊕ xy2 ⊕ y3 has to be either x3 or y3. This is because,
if either x or y is greater, x3 or y3 will definitely be greater than x2y and xy2 which include the
smaller term. And, if x and y are equal all four terms will be equal. Therefore, we can say that,

(x⊕ y)3 = x3 ⊕ y3

and more generally that
(x⊕ y)n = xn ⊕ yn
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Figure 1: Four tropical curves with their Newton subdivisions to the left

3 Tropical Curves

3.1 Introduction
Consider a polynomial in two variables

p(x, y) =
⊕
j,k

cjk � xj � yk = max
j,k

(cjk + jx+ ky).

Definition 3.1. Let p(x, y) be as above. Then for all (x, y) ∈ R2, define the valence of (x, y) to
be the number of monomials which achieve the value p(x, y).

Definition 3.2. The tropical plane curve corresponding to p(x, y) is the closure in R2 of the set
of points with valence greater than 1. A subspace of a tropical plane curve is called an edge if it
is a maximal subspace homeomorphic to an open interval, and points that do not lie on edges are
called vertices.

In other words, the tropical curve C defined by p consists of the points (x, y) ∈ R where p
is not differentiable because maximum is assumed by more than one of the terms of p. Tropical
polynomials are piecewise-linear functions with integer slope where differentiable.

3.2 Newton Subdivision
Definition 3.3. Let p(x, y) be a tropical polynomial, and suppose that the indices (i, j) of the
monomial set are plotted in Z2. Then, the convex hull of these points is called the Newton polygon
of p. Suppose in addition that an edge is drawn between all pairs of indices such that the corre-
sponding monomials simultaneously achieve the value p(x, y) somewhere in the plane. The result
is a subdivision of the Newton polygon into small polygons. This subdivision is called the Newton
subdivision, and the smaller polygons are called the faces of the subdivision.

Newton subdivision appears to be the most efficient way to quickly visualize and draw tropical
plane curves. Figure 1 shows the tropical curves in R2 corresponding to four different tropical
polynomials. The Newton subdivisions are drawn to the left of each curve.

All of the examples of tropical plane curves that we have presented so far in figure 1 have had
had fully subdivided Newton polygons. This is where the subdivision breaks the polygon into
triangles of area 1

2 .

3



Figure 2: Two tropical curves whose Newton subdivision (to the left) do not fully subdivide the
Newton polygon

However, consider what happens when this is not the case. For example, we can deform the
bottom two tropical curves in figure 1 by changing a single coefficient to bring two of the edges
into coincidence.The result is shown in figure 2. Clearly we should regard the edges that are drawn
double in this figure as being edges of multiplicity 2.

3.3 Multiplicity
Before we define multiplicity, we must introduce val(x).

Definition 3.4. The field of Puiseux series, which we denote K, is given by⋃
k≥1

C((t
1
k )),

where the union is taken in an algebraic closure of C((t)). For any x ∈ K∗, we denote by val(x)
the smallest exponent of t occurring in x.

Definition 3.5. The multiplicity of an edge in a hypersurface is the val(p) − 1, where p is any
point on the interior of the edge.

Edge multiplicity is very easy to read off of the Newton polygon: each edge in the hypersurface
passes through some number of vertices of the polygon, and the multiplicity is one less than this
number.

In order to specify a tropical plane curve, we should really give not only the set in R2, but also
the edge multiplicities. These data uniquely determine the polynomial defining the curve, up to
tropical multiplication by a scalar.
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