
NON-COMMUTATIVE RINGS

ALEX THOLEN

1. What Are Non-Commutative Rings

First, let’s see what rings are.

Definition 1.1. Rings are sets of numbers where
(1) Addition is associative: a + (b + c) = (a + b) + c for all a, b, c ∈ R.
(2) Addition is commutative: a + b = b + a for all a, b ∈ R.
(3) There is an additive identity 0 ∈ R such that a + 0 = 0 + a = a for all a ∈ R.
(4) Each element has an additive inverse: for every a ∈ R, there is an element −a ∈ R so

that a + (−a) = 0.
(5) Multiplication is associative: a× (b× c) = (a× b)× c for all a, b, c ∈ R.
(6)There is a multiplicative identity 1Left ∈ R and 1Right ∈ R so that a×1Right = 1Left×a =

a for all a ∈ R.
(7) Distributive law: a× (b + c) = (a× b) + (a× c).

Remark 1.2. Note that multiplication need not be commutative. Also, note that we do not
necessarily have multiplicative inverses.

Definition 1.3. Non-Commutative rings are rings where multiplication is not commutative:
i.e. a× b 6= b× a for some a, b ∈ R.

Remark 1.4. We normally write a× b as a · b, or even as ab.

Example. The matrix ring of n× n matrices over the real numbers, where n > 1.

Example. Hamilton’s quaternions

2. Some Basic Uses

Let’s begin with the basics.

Proposition 2.1. (1) 1Left = 1Right.
(2) The additive and multiplicative identities 0 and 1 are unique
(3) Additive inverses are unique
(4)(−1)× (−1) = 1
(5) For any a ∈ R, a× 0 = 0× a = 0.
(6)For any a ∈ R, (−1)× a = −a.

Proof. (1) We look at 1Left×1Right. Since 1Left is a left identity, we get 1Left×1Right = 1Right.
Also, since 1Right is a right identity, we get 1Left × 1Right = 1Left. So, 1Right = 1Left. (2)
Assume that there are two 0’s. Say 0 and 0′. Then, add them up. 0 + 0′ = 0 and 0′+ 0 = 0′.
That means, 0 = 0′.
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Assume that there are two 1′s. Say 1 and 1′. Then, multiply them. 1 × (1′) = 1 and
(1)× 1′ = 1′. That means, 1 = 1′.

(3) Assume there are two additive inverses of a, −a and −a′. We have −a + a − a′ =
(−a + a)− a′ = −a′ and −a + a− a′ = −a + (a− a′) = −a. So, −a = −a′.

(4) (−1)×(1+−1) = (1)×(0) = 0 and (−1)×(1+−1) = −1×1+−1×−1 = −1+−1×−1 =
0, so −1× 1 +−1×−1 = −1 +−1×−1 = 0. Solving, we get −1×−1 = 0−−1 = 1.

(5) a× (x + 0) = a× x = a× x + a× 0. So, a× 0 = 0.
(6) a×(1−1) = a×1+a×−1 = 0. So, a+−1∗a = 0, or a = −(−1∗a), or −a = −1∗a. �

Definition 2.2. Let R be a ring. A subset of I is termed: A left ideal of R if I is a subgroup
of R under + and if rx ∈ I for any r ∈ R and x ∈ I (note that the name comes from the
element being on the left)

Definition 2.3. A right ideal of R if I is a subgroup of R under + and if rx ∈ I for any
r ∈ R and x ∈ I

Definition 2.4. A two-sided ideal of R if it is both a left and a right ideal.

3. Quaternions

Now that we have figured out the basic things on non-commutative rings, let’s look at
one of the examp;les. Let’s look at Hamilton’s Quaternions. Or rather, we will look at it’s
polynomial ring. Let’s first define what the Quaternions are.

Definition 3.1. The Quaternions, denoted by H, are R4 where we denote (a, b, c, d) as
a + bi + cj + dk, and

(1) ij = k

(2) ji = −k
(3) jk = i

(4) kj = i

(5) ki = j

(6) ik = −j
(7) ijk = i2 = j2 = k2 = −1

Let’s begin by looking at multiplication.

Definition 3.2. Multiplication by a constant is just multiplication in the reals, applied to
the 1, i, j, k cooefficients.

Question 3.3. How do you express m×n, where m = a+bi+cj+dk and n = w+xi+yj+zk?

Let’s write it out. We have (a + bi + cj + dk)× (w + xi + yj + zk). If we expand, we get
(aw + bixi+ cjyj + dkzk) + (axi+ biyj + cjzk + dkw)+ (ayj + bizk + cjw + dkxi) + (azk +
biw + cjxi + dkyj). Since we can move constants to the sides, we get (aw + bxi2 + cyj2 +
dzk2) + (axi + byij + czjk + dwk)+ (ayj + bzik + cwj + dxki) + (azk + bwi + cxji + dykj)
We now how to multiply each of 1, i, j, k, so we get

m×n = (aw−bx−cy−dz)+(ax+bw+cz−dy)i+(ay−bz+cw+dx)j+(az+by−cx+zw)k
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Next up is figuring out how you inverse numbers. We have 1
a+bi+cj+dk

= w + xi+ yj + zk.

So, we expand, to get aw − bx− cy − dz = 1 ax + bw + cz − dy = 0 ay − bz + cw + dx = 0
az + by − cx + dw = 0 Eventually, you get w + xi + yj + zk = a−bi−cj−dk

a2+b2+c2+d2

Let’s define the absolute value.

Definition 3.4. We will define the absolute of x = a+bi+cj+dk to be |x| =
√
a2 + b2 + c2 + d2

Let’s see what properties it has.

Question 3.5. Is |ab| = |a||b|?

Let’s see if this is true. We want |(a + bi + cj + dk)(e + fi + gj + hk)| = |a + bi + cj +
dk||e + fi + gj + hk|. Let’s expand each thing. We have√

(ae− bf − cg − dh)2 + (af + bg + ch− de)2 + (ag − bh + ce + df)2 + (ah + bg − cf + de)2

=
√

(a2 + b2 + c2 + d2)(e2 + f 2 + g2 + h2).

When you expand the left side though, there are negatives that don’t get accounted for.
That means that absolute values does not multiply :( Now, let’s look at the quaternions
polynomial ring.

Definition 3.6. We will define the polynomial ring H[x] to be

f(x) = anx
n + an−1x

n−1 + ... + a1x + a0,

where a1, a2, ..., an ∈ H.

So, let’s look at some simple polynomials and their roots. Let’s begin with just the single
degree.

So, we have f(x) = ax + b. Obviously, the roots should only be − b
a
. Let’s prove this. We

want to show that if ar + b = 0, then r = − b
a
. We first subtract b, giving ar = −b. Then,

we left multiply by 1
a
, giving r = − 1

a
b. Just as we expected.

Next, let’s look at some quadratics.
Let’s begin with the most simple one. We have x2. We want to show that there are no

0 roots, other than 0. So, let’s see if everything has an inverse. We can see that the only
reason something wouldn’t have a square root is if a2 + b2 + c2 + d2 = 0. Since a, b, c, d are
reals, the only way that is possible is if a = b = c = d = 0. So, only 0 has no inverse. That
means that if x2 = 0, we can multiply by 1

x
twice, if x 6= 0, to get 1 = 0. That is wrong, so

the only root of 0 is 0.
Now, let’s look at a slightly more complex one. We will look at x2 + 1 = 0. That means

that x2 = −1. Obviously, i, j, k work. So, does −1 have more than 3 square roots? Yes it
does actually. If we look at anything of the form bi + cj + dk where b2 + c2 + d2 = 1, then
we get x2 = −1. However, is that all of them? Can we prove that those are all of them? We
want

aa− bb− cc− dd = −1
ab + ba + cd− dc = 0
ac− bd + ca + db = 0
ad + bc− cb + da = 0
Solving, we get b2 + c2 + d2 = 1 and a = 0. Using this, we have shown that if we have

x2 + n = 0, then the solutions are b2 + c2 + d2 = −n.
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If we look at x2−1 = 0, then we get the same equations except for that a2−b2−c2−d2 = 1.
Then, the only solution is a2 = 1, or a = ±1. So, the only two roots to x2 − 1 are 1,−1.
Using this, we have shown that if we have x2 − n = 0, then the solutions are ±

√
n.
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