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Abstract. In this paper, we cover the constraints regarding the pairwise distances of points
in the Euclidean space. We also cover a portion of linear algebra regarding eigenvalues and
eigenvectors and matrix factorization.

1. The Triangle Inequality

It is a well known fact that the pairwise distances between three points must satisfy the
triangle inequality.

Theorem 1.1. For any three points a,b, c in any Euclidean space,

||a− b|| ≤ ||b− c||+ ||c− a||
where ||R|| is the distance from R to the origin.

It is also well known that the triangle inequality is the only restriction of the distances of
three points. Therefore, for any three numbers, x, y, z, that satisfy x ≤ y+ z, y ≤ z+x, and
z ≤ x+ y, there exist points a,b, c in Rn where n ≥ 2 such that ||a− b|| = x, ||b− c|| = y,
and ||c− b|| = z. We know this works for three points, but what happens when we have
more than three points? In Figure 1, it can be observed that the distances between each
group of three points comply with the triangle inequality, but there does not exist points
a, b, c, d ∈ R3 such that this can happen.
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Figure 1. An example of an impossible figure.

One may try to prove that there is no common intersection between the three spheres around
three of the points with radii corresponding to their distances with the other fourth point,
but linear algebra provides a more elegant method of determining if the pairwise distances
given is achievable.

2. Eigenvectors and Eigenvalues

We introduce the eigenvector and the eigenvalue.
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Definition 2.1. An eigenvector of a transformation matrix A is a vector x such that Ax =
λx, λ ∈ R, or, after multiplied by matrix M , is a scalar multiple of itself.

Definition 2.2. The eigenvectors are determined by solving for their corresponding λ first,
which is called the eigenvalue.

We solve for the eigenvalues by using the characteristic equation of the matrix A which
states

det(A− λI) = 0.

Computing A − λI is the same as subtracting λ from each element on the diagonal of A.

Therefore, if A =

a11 . . . a1n
...

. . .
...

an1 . . . ann

, then A−λI =

a11 − λ . . . a1n
...

. . .
...

an1 . . . ann − λ

. We now simply

solve for λ from det(A − λI) = 0. Since there are n rows, the degree of the polynomial
created on the LHS will be n, thus, giving n solutions. To solve for the eigenvectors, we
must first rearrange this equation:

Ax = λx

Ax− λx = 0

(A− λI)x = 0

Plug in for each λ and A− λI becomes a matrix with constant elements. We now simply

let x =

x1...
xn

 and expand the multiplication, creating a system of linear equations.

Remark 2.3. For a unique λ, the solutions for eigenvectors has one degree of freedom since
multiplying the vector by scalar is the equivalent of muliplying the scalar after multiplying
the matrix, but for each duplicate, the degree of freedom increases.

3. Diagonalization of Symmetric Matrices

We first introduce the concept of the basis, then we use the basis of eigenvectors to
diagonalize a matrix.

Definition 3.1. The basis is a coordinate system that relies on a set of n vectors each of size
n. A vector ~v, if ~v = c1 ~v1 + c2 ~v2 + · · · cn ~vn, then ~v in basis A = (~v1, ~v2, · · · ~vn), represented as

[~v]A is equal to


c1
c2
...
cn

. For example, R3 uses the basis B =

1
0
0

 ,
0

1
0

 ,
0

0
1

. The vector

~v =

1
1
1

 in basis U =

1
1
0

 ,
−1

1
0

 ,
 0
−1
1

 is equal to

3
2
1
2
1

 since

1
1
1

 =
3

2

1
1
0

+
1

2

−1
1
0

+ 1

 0
−1
1

 .
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Theorem 3.2. For vector ~x and basis B = (~v1, ~v2, · · · ~vn), ~x = S[~x]B where
S =

[
~v1 ~v2 · · · ~vn

]
.

Proof. Let [~x]B =


c1
c2
...
cn

. Then,

~x = c1 ~v1 + c2 ~v2 + · · · cn ~vn = [~v1, ~v2, · · · ~vn]


c1
c2
...
cn

 = S[~x]B.

�

Theorem 3.3. Let there be a transformation matrix A. Let the matrix B be the B-matrix of
A, which performs the transformation of A in basis B = (~v1, ~v2, · · · ~vn) (i.e. [A~x]B = B[~x]B).
Then, AS = SB where S =

[
~v1 ~v2 · · · ~vn

]
.

Proof. We know that AS[~x]B = A~x. We also know that AS[~x]B = S[A~x]B = A~x. Therefore,

AS[~x]B = AS[~x]B =⇒ AS = SB.

�

We now move on to the diagonalization of a matrix.

Theorem 3.4. Let there be a matrix A and eigenbasis D = (~v1, ~v2, · · · ~vn) of A with A~vi =
λi~vi. Then the D-matrix D of A is

D = S−1AS =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 , where S =
[
~v1 ~v2 · · · ~vn

]
Proof. We know that D = S−1AS is true from rearranging Theorem 3.3. We must prove
that the D-matrix of A is the diagonal matrix with the eigenvalues of A. Let there be a
vector ~x = c1 ~v1 + c2 ~v2 + · · · cn ~vn. Then, D[x]D = [Ax]D. We see that

Ax = A(c1 ~v1 + c2 ~v2 + · · · cn ~vn)

= c1A~v1 + c2A~v2 + · · · cnA~vn
= c1λ1 ~v1 + c2λ2 ~v2 + · · · cnλn ~vn.

Therefore, [Ax]D =


c1λ1
c2λ2

...
cnλn

. We know that D[x]D = D


c1
c2
...
cn

. Thus, since D[x]D = [Ax]D it

is obvious that

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 .
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�

4. Matrix Factorization

We present a few ways to factorize matrices.

Theorem 4.1. A positive semidefinite real matrix has eigenvalues that are nonnegative.

Proof. Let the matrix be A. Since it is positive semidefinite, xTMX ≥ 0. Let ~v be an
eigenvector of A. Then,

vTMv = vTλv = vTvλ ≥ 0.

Since vTv must be nonnegative, λ, which is the eigenvalue of ~v must also be nonnegative. �

This will come in use later.

Definition 4.2. A real matrix M is said to be positive semidefinite iff, ∀x ∈ Rn, xTMx ≥ 0,
where MT is the transpose of M .

Theorem 4.3. A real symmetric n × n matrix A is positive semidefinite if there exists an
n× n real matrix X such that A = XTX.

Proof. Since A = XTX, we know that xTAx = xTXTXx = (Xx)T (Xx) = ||Xx||2 ≥ 0.
We now prove the other direction:
Let A be a real symmetric n × n matrix. Therefore, it is positive semidefinite and is di-
agonalizable: D = S−1AS =⇒ A = SDS−1 where S =

[
~v1 ~v2 · · · ~vn

]
and ~v1, ~v2, · · · ~vn

are the eigenvectors of A and D is a diagonal matrix containing the eigenvalues of A. Let
T = S−1, so A = T−1DT .

Theorem 4.4. The eigenvectors of a symmetric matrix are orthogonal.

Proof. For any matrix A and vectors x and y, we know that

〈Ax,y〉 = (Ax)Ty = xTATy = 〈x, ATy〉.

Now let A be a symmetric matrix and x and y be its eigenvectors. Let the corresponding
distinct eigenvalues be λ and µ, respectively. Therefore,

λ〈x,y〉 = 〈λx,y〉 = 〈Ax,y〉 = 〈x, ATy〉 = 〈x, Ay〉 = 〈x, µy〉 = µ〈x,y〉.

Thus, λ〈x,y〉 = µ〈x,y〉 =⇒ (λ− µ)〈x,y〉 = 0. Since λ 6= µ, then λ− µ 6= 0 and 〈x,y〉 = 0
implying that x ⊥ y. �

Therefore, T is orthogonal and T−1 = T T , so A = T TDT .

Let R =
√
D =


√
λ1 0 . . . 0
0
√
λ2 . . . 0

...
...

. . .
...

0 0 . . .
√
λn

. Since all eigenvalues are nonnegative by Theorem

4.1, R remains a real matrix. Define the matrix X = RT . We can now see that XTX =
(RT )TRT = T TRTRT = T TDT = A. �
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5. The Theorem for Pairwise Distances of Several Points

We finally present and prove the following theorem.

Theorem 5.1. Let mij, i, j = 0, 1, . . . , n, be nonnegative real numbers with mij = mji for all
i, j and mii = 0 for all i. Then points p0,p1, . . . ,pn ∈ Rn with ||pi − pj|| = mij for all i, j
exist iff the n× n matrix G with

gij =
1

2

(
m2

oi +m2
0j −m2

ij

)
is positive semidefinite.

Proof. Let the given points be p0,p1, . . .pn in Rn. The cosine theorem tells us that for any
two vectors x,y ∈ R2, ||x− y||2 = ||x||2+ ||y||2−2〈x,y〉 where 〈x,y〉 is the dot product of x
and y. We define xi := pi − p0 for i = 1, 2, . . . n. By substituting and rearranging the cosine
theorem, we see that 〈xi,xj〉 = 1

2
(||xi||2 + ||xj||2 − ||xi − xj||2) = gij. Therefore, G is the

Gram Matrix of vectors xi, which is a matrix in which each entry is given by gij = 〈vi,vj〉
when it is of vectors v1, v2, . . . vn. Therefore, it is clear that G can be represented as XTX.
Thus, G is positive semidefinite.

We now prove the other direction of the ”if and only if”. If G is positive semidefinite, it
can be represented as G = XTX for some n× n matrix X. Let X consist of column vectors
pk where pi ∈ R2 is in the ith column for i = 1, 2, · · ·n. Define p0 := 0. Therefore,

gii = 〈xi, xi〉 = 〈pi − p0, pi − p0〉 = ||pi − p0||2 = m2
0i

and

gij = 〈xi, xj〉 =
1

2

(
||xi||2 + ||xj||2 − ||xi − xj||2

)
=

1

2

(
m2

0i +m2
0j − ||pi − pj||2

)
This implies ||pi − pj|| = mij and the proof is complete. �
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[1] Matoušek, Jǐŕı. Thirty-three miniatures: Mathematical and Algorithmic applications of Linear Algebra.
Providence, RI: American Mathematical Society, 2010.

[2] Quinlan, Rachel. Diagonalizability of symmetric matrices. Galway, Ireland: National University of Ire-
land, 2017.

[3] Bretscher, Otto. Linear algebra with applications. Eaglewood Cliffs, NJ: Prentice Hall, 332-333, 1997.


	1. The Triangle Inequality
	2. Eigenvectors and Eigenvalues
	3. Diagonalization of Symmetric Matrices
	4. Matrix Factorization
	5. The Theorem for Pairwise Distances of Several Points
	References

