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1. Introduction

Fixed point theorems are powerful mathematical tools with a surprisingly wide range
of applications. They tell us that for any sufficiently nice space X and any nice function
f : X → X, f has a fixed point i.e., a point x∗ ∈ X such that f(x∗) = x∗.

An example of a fixed point theorem is Brouwer’s fixed point theorem (see Theorem 5.2).
In this theorem, our space X is nice if it is homeomorphic to the closed unit ball in Rn for
some n > 0, and the function f is nice if it is a continuous map. The philosophy behind
fixed point theorems can be summarized with the following statement:

Weaker hypothesis =⇒ harder, more general result.

We haven’t defined specifically what the space X or map f has to look like, only that they
are sufficiently well-behaved. In general, the properties that we require are weak enough so
that the fixed point theorems can be applied to many problems if we are clever in how we
define the space X and the map f .

The Borsuk-Ulam theorem is a great example of this philosophy, though it isn’t strictly
a fixed point theorem. Although it is a general topological result, it has surprising (more
concrete) consequences and applications to problems such as

• the avocado sandwich theorem,
• the Lyusternik-Shnirel’man theorem,
• and the necklace splitting problem.

In this paper, we state and prove two major fixed point theorems and showcase their
applications in game theory. In particular, we use Sperner’s lemma to prove that there is an
envy-free division of a cake into n pieces for n people. Then, we use Brouwer’s fixed point
theorem to prove the existence of Nash equilibrium for non-cooperative games with finitely
many players, each with finitely many pure strategies.

Much of the paper is dedicated to building up the technical definitions from simplicial
geometry and game theory. However, this is a necessity, as understanding the application of
fixed point theorems requires us to precisely define the space X and the map f .

2. Some Notions from Analysis

First, we review some results from analysis. There are many equivalent definitions for
continuous functions. The most helpful definition for us will tell us about the convergence
of sequences.

Definition 2.1. If D ⊆ Rn and f : D → Rm, then f is continuous if for every sequence
(xj)j≥1 in D converging to x ∈ D, the sequence (f(xj))j≥1 converges to f(x).

Continuous functions work well with inequalities:
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Theorem 2.2. If f : D → R is continuous, (xj)j≥1 → x in D, (aj)j≥1 → a in R and
f(xj) ≤ aj for all j, then f(x) ≤ a.

3. Sperner’s Lemma

3.1. Definitions from Simplicial Geometry. In two dimensions, Sperner’s lemma is a
combinatorial fixed point theorem on vertex colorings of triangulations. A triangulation of
a triangle ∆ is a collection of triangles ∆i such that

• the union of ∆i is ∆,
• and if the intersection of ∆i and ∆j for i 6= j is nonempty, then they intersect at a

single vertex or a edge. If they intersect at an edge, its endpoints must be vertices
of both ∆i and ∆j.

To discuss the n-dimensional version of Sperner’s lemma, we must generalize the notion of
triangles and edges to higher dimensions. The right notion of a n-dimensional triangle is an
n-simplex.

Definition 3.1. An n-simplex is the convex hull in Rm, with m ≥ n+1, of n+1 geometrically
independent points v0, v1, . . . , vn. We call v0, v1, . . . , vn the vertices of the simplex.

The points v0, v1, . . . , vn ∈ Rm are geometrically independent if the vectors −−→v0v1,−−→v0v2, . . . ,−−→v0vn are linearly independent.

Example. A 1-simplex is a line segment of some positive length. We require that it lies in
Rm for some integer m ≥ 2. A 2-simplex is a triangle with positive area. It must lie in Rm

for some integer m ≥ 3. A 3-simplex is a tetrahedron with positive volume, lying in Rm for
some m ≥ 4.

Nonexample. A square in R4 is almost a 3-simplex (it is the convex hull of n + 1 points in
Rm with m ≥ n+ 1), but its vertices are not geometrically independent.

It will be useful to have a canonical form for an n-simplex.

Definition 3.2. The standard n-simplex in Rn+1 is the convex hull of the points (1, 0, . . . , 0),
(0, 1, . . . , 0), . . . , (0, 0, . . . , 1).

The reader should convince themselves that the standard 1-simplex is a line segment of
length

√
2, and that the standard 2-simplex is an equilateral triangle of side length

√
2.

The definition of convex hull implies that the standard n-simplex consists of all points x =
(x0, x1, . . . , xn) ∈ Rn+1 with 0 ≤ xi ≤ 1 for all 0 ≤ i ≤ n and

∑n
i=0 xi = 1. More generally, if

S is an n-simplex with vertices v0, v1, . . . , vn, then any point x ∈ S can be uniquely expressed
as

x = α0v0 + α1v1 + · · ·+ αnvn
for αi ∈ R, 0 ≤ αi ≤ 1 for all 0 ≤ i ≤ n, and

∑n
i=0 αi = 1.

Suppose a triangle has vertices v0, v1, v2. The triangle contains lower-dimensional compo-
nents called edges and vertices. Notice that edges are formed by taking the 1-simplices with
vertex sets {v0, v1}, {v0, v2}, or {v1, v2}. The vertices are 0-simplices with vertices at v0, v1,
or v2. We may similarly define the lower-dimensional components of an n-simplex by taking
the convex hull of a subset of the vertex set.

Definition 3.3. An m-face of an n-simplex S is the m-simplex formed by m + 1 vertices
out of the n+ 1 vertices of S. An (n− 1)-face of an n-simplex is called a facet.
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Figure 1. Subdivision of a 2-simplex i.e., a triangulation.

Exercise. For given m,n, how many m-faces does an n-simplex have?

Now, we define subdivisions of n-simplices, which are a generalization of triangulations
for higher dimensions. Just like in the two-dimensional case, we want the sub-simplices to
have the same dimensions as the original simplex (a triangle is subdivided into triangles; an
n-simplex is subdivided into n-simplices).

Definition 3.4. A subdivision of an n-simplex S is a collection of subsets of S, each an
n-simplex, called a sub-simplex of S, such that:

(1) The union of all the sub-simplices is S.
(2) Any two sub-simplices either do not intersect or have an intersection that is a common

face.

We call a facet of a sub-simplex a sub-facet. A subdivision of a 2-simplex is called a trian-
gulation.

See Figure 1 for an example triangulation.

3.2. Sperner’s Lemma. With the preliminary definitions out of the way, we are ready to
state and prove Sperner’s lemma. In the two-dimensional case, each vertex was labeled a
color from {0, 1, 2}. In the n-dimensional case, each vertex is labeled with a color from
{0, 1, . . . , n}.

It will be helpful to categorize certain types of simplices by the colors of their vertices. For
analyzing the subdivision of an n-simplex, we will only care about describing sub-simplices
and sub-facets in terms of their vertices’ colors.

Definition 3.5. Assume we have a subdivision of an n-simplex S and that the vertices
of sub-simplices of S are labeled with colors from {0, 1, . . . , n}. A facet in S is called a
(a0, a1, . . . , an−1) facet if its vertices are labeled a0, a1, . . . , an−1. Also an n-simplex in S
(including S and sub-simplices) is called an (a0, a1, . . . , an) simplex if its vertices are labeled
a0, a1, . . . , an.

Example. Suppose S were a (0, 1, 2, . . . , n) simplex. Its n + 1 facets have vertex colorings

(0, 1, 2, . . . , k̂, . . . , n) where the hatted element k is excluded from the sequence.

Definition 3.6. Given a subdivision of an n-simplex S with the vertices of the sub-simplices
labeled with colors from the set {0, 1, . . . , n}, the subdivision is said to have a Sperner labeling
if the sub-simplices are labeled according to the following rules:
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(a) Sperner labeling of the triangulation from
Figure 1. Red = 0, Green = 1, Blue = 2.

(b) The unique complete collection of p-paths
for the Sperner labeling.

Figure 2. A Sperner labeling and its corresponding p-paths.

(1) S is a (0, 1, . . . , n) simplex,
(2) The vertices of sub-simplices on a facet of S do not have the same label as the vertex

opposite the facet.

Example. A valid Sperner labeling is given in Figure 2a. We can verify that S is a (0, 1, 2)
simplex and that the vertices on the edges of S do not have the same label as the vertex
opposite that edge. For instance, the vertices on the left edge must be labeled 0 or 1
(respectively red or green) because the bottom-right vertex is labeled 2 (respectively blue).

Example. Suppose we subdivided a 3-simplex i.e., a tetrahedron. Some of the sub-simplices
will have vertices on the faces (more precisely, the facets) of S. We claim that the subdivision
induces triangulations of the faces of S. For a Sperner labeling, the 4 vertices of S must be
labeled 0, 1, 2, 3 in some order. Then, each face f of S is the convex hull of 3 of the 4 vertices
of S. For sake of concreteness, let f be a (0, 1, 2) facet. The vertices contained in f (from
the induced triangulation) must be labeled with a 0, 1, or 2. They cannot be labeled 3 as
the vertex of S opposite to f is labeled with a 3.

Remark 3.7. There’s actually an equivalent formulation of Sperner labeling that may aid
our intuition:

• all vertices of P have distinct labels,
• and the label of any vertex of a sub-simplex of P that lies on a facet of P , must

match the label of one of the vertices of P that spans that facet.

The reader should convince themselves that the two definitions for a Sperner labeling are
equivalent for subdivisions of a 2-simplex and 3-simplex. This alternative definition is how
we actually generalize Sperner labeling for subdivisions of polyhedra.

We may consider a graph dual to the subdivision: define the vertices of the graph to be
the centers of the sub-simplices, and let an edge connect two vertices if their corresponding
sub-simplices intersect at a sub-facet. For the counting argument in the proof of Sperner’s
lemma, we consider certain paths on this dual graph (however, we also let the paths leave
the n-simplex).

Definition 3.8. A p-path (permissible path) in an n-simplex is defined as a path that:

(1) begins in a (0, 1, . . . , n) sub-simplex or outside S,
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(2) ends in a (0, 1, . . . , n) sub-simplex or outside S,
(3) crosses from one region to an adjacent region only through a (0, 1, . . . , n−1) sub-facet,
(4) crosses each (0, 1, . . . , n− 1) sub-facet exactly once.

A collection of p-paths is complete if every (0, 1, . . . , n− 1) sub-facet is crossed by a unique
path in the collection.

Let’s understand this definition for n = 2. Figure 2a shows a Sperner labeling of a
triangulation. We connect the centers of two adjacent sub-triangles if their shared edge
is colored (0, 1). Figure 2b shows the end result of this process. Notice that we obtain a
collection of paths which begin and end in a (0, 1, 2) sub-simplex or outside S. Moreover,
every (0, 1) sub-facet is crossed exactly once by the paths. Thus, the collection of p-paths is
complete.

For higher dimensions, we connect the centers of two adjacent sub-simplices if their shared
sub-facet is colored (0, 1, . . . , n− 1). In a similar fashion as before, this process will give us
a complete collection of p-paths. Thus, we claim the following proposition.

Proposition 3.9. A complete collection of p-path exists for any n-simplex.

We leave the proof as an exercise to the reader. We are now ready to prove Sperner’s
lemma for n-simplices.

Theorem 3.10 (Sperner’s lemma). In any subdivision of an n-simplex S that has a Sperner
labeling (n ∈ Z>0), there exists an odd number of (0, 1, . . . , n) sub-simplices.

Proof. We proceed by induction on n. For n = 1, we are given a line segment [0, 1] and some
points a0, . . . , ak ∈ R with 0 = a0 < a1 < a2 < · · · < ak−1 < ak = 1. Each distinguished
point including the endpoints is colored with a 0 or 1 such that the colors of the endpoints
are different. We wish to prove that there are an odd number of (0, 1) sub-simplices. This
corresponds to finding the number of indices i such that ai and ai+1 have different colors.

When k = 1, this is clear. We consider how the parity changes when we add a new point
to the sequence. Say we insert ai between ai−1 and ai+1. We can check that no matter what
the colors of ai, ai−1, ai+1 are, the parity does not change. Hence, there is an odd number of
indices i such that ai and ai+1 have different labels and so there are an odd number of (0, 1)
sub-simplices.

Suppose that Sperner’s lemma holds for subdivisions of (n − 1)-simplices. We will prove
Sperner’s lemma for n-simplices, so assume that we have a subdivision of an n-simplex S
with Sperner labeling. By Remark 3.7, any (0, 1, . . . , n−1) sub-facet that lies on a facet of S
must lie on the (0, 1, . . . , n−1) facet of S. The (0, 1, . . . , n−1) facet of S is an (n−1)-simplex
with (an induced) Sperner labeling. Thus, by induction, the (0, 1, . . . , n − 1) facet has an
odd number of (0, 1, . . . , n− 1) sub-facets. Hence, the number of (0, 1, . . . , n− 1) sub-facets
on the boundary of S is odd.

From Proposition 3.9, we have a complete collection of p-paths for the subdivision of S.
Each path begins/ends inside a unique (0, 1, . . . , n) sub-simplex or outside S. Consider the
number of (0, 1, . . . , n− 1) sub-facets on the boundary of S that are crossed by any p-path.
The only way that a p-path can pass through the boundary of S is through a (0, 1, . . . , n−1)
sub-facets on the boundary of S, and each time the p-path passes through the boundary,
the path switches between being inside and outside S. Thus, the p-path has endpoints both
inside and outside S if and only if it passes through an odd number of (0, 1, . . . , n − 1)
sub-facets on the boundary of S. Call this an inside-outside path.
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Any other type of paths will pass through the boundary an even number of times. Since
the collection of p-paths passes through all (0, 1, . . . , n − 1) sub-facets exactly once and we
know that there is an odd number of (0, 1, . . . , n− 1) sub-facets on the boundary of S, there
must be an odd number of inside-outside paths. Finally, if a p-path ends inside S, then it
ends in a (0, 1, . . . , n) sub-simplex. This implies that the number of (0, 1, . . . , n) sub-simplices
is odd. �

4. Envy-Free Division

In this section, we will use Sperner’s lemma to prove the existence of envy-free division of
a single cake to n people. We model the cake as the line segment [0, 1] and make n− 1 cuts
to get pieces of sizes x1, x2, . . . , xn. Notice that xi ≥ 0 for all i and

∑n
i=1 xi = 1. Thus, the

space of possible cuts into n pieces forms an (n− 1)-simplex. More formally,

Definition 4.1. A cake-cut for n people is defined as a point (x1, x2, . . . , xn) where xi is the
size of the ith piece, such that

0 ≤ xi ≤ 1 ∀i ∈ {1, 2, . . . , n},
n∑
i=1

xi = 1.

The set of all possible cake-cuts S is a (n− 1)-simplex.

For each particular cutting of the cake, each person Pα will have a preference among the n
pieces. Moreover, a person may be impartial between multiple pieces, so they are fine with
getting any one of their top choices. Maybe person P1 only cares getting the biggest piece,
or maybe person P2 care about getting the piece with the most strawberries. Each person
may have wildly different preferences, but we want to deal with a “preference” function that
is somewhat nice to work with.

Definition 4.2. For α = P1, P2, . . . , Pn, and x = (x1, x2, . . . , xn) ∈ S, let Cα(x) be a subset
of {1, 2, . . . , n}. We call the set-valued function Cα a choice function for person α if:

(1) Cα(x) 6= 0 or all x ∈ S.
(2) For all x ∈ S, if xi = 0, then i /∈ Cα(x).
(3) Cα is continuous.

The first two restrictions make intuitive sense. The first condition says that each person
will like at least one of the pieces. The second condition guarantees that a nonempty piece
is always preferred over an empty piece. We can imagine that everyone is hungry, so they
would rather eat a very small piece than eat nothing. The third condition is a bit more
technical and will come into play in the proof of the next theorem.

Theorem 4.3 (Existence of Envy-Free Division). Let CP1 , CP2 , . . . , CPn be the choice func-
tions on S. There exists x ∈ S and distinct α1, α2, . . . , αn among P1, P2, . . . , Pn such that
i ∈ Cαi

(x) for all 1 ≤ i ≤ n. Thus, at x ∈ S, each person can have a piece of cake that they
choose.

In the statement of the above theorem, (α1, α2, . . . , αn) is a permutation of (P1, P2, . . . , Pn).
This condition says that person i is allowed to take the jth piece where i 6= j, as long everyone
takes different pieces.
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(a) T1 (b) T2 (c) T3

Figure 3. Increasingly finer triangulations and their Sperner labelings.

Proof. We start with a sequence of increasingly finer subdivisions T1, T2, . . . of S, constructed
so that every sub-simplex of each subdivision is labeled (P1, . . . , Pn). For n = 2, we can form
a finer triangulation Ti+1 by adding the midpoints of the sub-facets of Ti as vertices of the
sub-simplices. The first two steps of this process are shown in Figure 3. A generalization of
this subdivision algorithm for simplices is called the barycentric subdivision. A nice property
is that the vertices of the resulting subdivision of an (n − 1)-simplex can be labeled with
n numbers so that every sub-simplex has vertices of every label. Now, for each vertex of
the triangulation, we replace the label Pi with a label i such that i ∈ CPi

(x) where x is
the coordinate of the vertex. If the choice function consists of more than one element, then
choose one arbitrarily.

We claim that this new labeling is a Sperner labeling. The vertices of S represent cake cuts
where the ith piece is the entire cake and the other pieces are empty. So any person would
prefer the ith piece, giving the vertex label i. Hence, S is a (1, . . . , n) simplex. Now consider
any vertex on a facet of S; for concreteness, we will let v be a vertex on the (1, 2, . . . ,m− 1)
facet of S. The coordinate of v is a linear combination of the coordinates of the vertices of
S labeled 1, 2, . . . ,m − 1. In particular, the mth coordinate of the vertices of S that span
over the facet is 0, so the mth coordinate of v must also be 0. Thus, any person would never
prefer the mth piece for the cake cut represented by v. Thus, we have shown that the new
labeling is a Sperner labeling.

By Sperner’s lemma, there is at least one (1, 2, . . . ,m) sub-simplex in any triangulation
Tn of S. Denote this sub-simplex Tn. Any (1, 2, . . . ,m) sub-simplex tells us that person
Pα prefers the σ(α)th piece where σ ∈ Sn is a permutation. Hence, each Tn “belongs” to a
unique permutation in Sn. Since there are finitely many permutations and infinitely many
(1, 2, . . . ,m) sub-simplices, there is at least one permutation σ for which infinitely many
(1, 2, . . . ,m) sub-simplices belong to. Without loss of generality, we will let σ be the identity
permutation so that σ(α) = α for all α = 1, 2, . . . , n. Moreover, for simplicity, we will let all
of the Tn belong to the identity permutation.

Consider the sequence of vertices of Tn with label 1. Since this is an infinite sequence
of points in a compact subset of Rn, there exists a subsequence of points that converges
to limit point in S. For simplicity, let the subsequence be (xn)n≥1 where xn is a vertex of
Tn, and let x be the limit of xn. As Tn is a sequence of increasingly finer subdivisions, the
diameters of Tn goes to 0 as n increases. Hence, all of the vertices of Tn converge to x. By
construction, for every vertex xα,n ∈ Tn with label α, we have α ∈ Cα(xα,n). Continuity of
the choice function tells us that α ∈ Cα(x) since (xα,n)n≥1 converges to x. Hence, for the
cake cut represented by x, person α will prefer the αth piece, as desired. �
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5. Brouwer’s Fixed Point Theorem

In this section, we will state and prove the Brouwer’s fixed point theorem, which is the
topological analogue of Sperner’s lemma.1 First we define a closed unit ball in Rn.

Definition 5.1. Let Bn denote the closed unit ball in Rn. This is the set of points in Rn

that at most distance 1 from the origin. Formally,

Bn =

{
(x1, x2, . . . , xn) ∈ Rn :

√
x21 + x22 + · · ·+ x2n ≤ 1

}
.

Theorem 5.2 (Brouwer). For any continuous function f : Bn → Bn, there is a point x∗

such that f(x∗) = x∗.

Proof. Because the standard n-simplex S is homeomorphic to Bn−1, it suffices to prove that
any continuous function f : S → S has a fixed point. Let T1, T2, . . . be a sequence of
increasingly finer subdivisions of S. Assume that the diameters of the sub-simplices tend to
0 as i→∞.

If any vertex of a sub-simplex in a subdivision is a fixed point of f , then we are done
since f has a fixed point. So, assume that none of the vertices of the sub-simplices of the
subdivisions are fixed points of f . For any x = (x0, x1, . . . , xn) ∈ S, let

f(x) = f(x0, x1, . . . , xn) = (f0(x), f1(x), . . . , fn(x)).

Assuming that x is not a fixed point, we can label x with the number p such that

p = min{k = 0, 1, . . . , n|fk(x) < xk}.

We claim that this labeling is a Sperner labeling on the subdivisions Ti. First note that
by assumption, the vertices of the sub-simplices are not fixed points, so the labels are well-
defined. The vertices of S are (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1), and according to
the labeling, they must be labeled 0, 1, . . . , n, respectively. Thus, S is a (0, 1, . . . , n) simplex.

Moreover, suppose that x is a point on the (0, 1, . . . , k̂, . . . , n) facet, which is opposite to the
vertex of S with a 1 in the kth coordinate. The kth coordinate of the vertices that span the
facet is 0, so kth coordinate of x is also 0. Hence, x will not be labeled k. This proves that
we have a Sperner labeling on every subdivision Ti.

By Sperner’s lemma, there exists at least one (0, 1, . . . , n) sub-simplex in S for each Ti.
For each Ti, choose a (0, 1, . . . , n) sub-simplex, then let vik be the vertex of the sub-simplex
labeled k. We obtain n + 1 sequences of points in S: (vik)i≥1 for k = 0, 1, . . . , n. For now,
consider just k = 0. Since S is a compact space, there exists a subsequence of (vi0)i≥1 that
converges to a point v∗. For simplicity, assume that the subsequence is the entire sequence
(vi0)i≥1.

Since the diameter of the sub-simplices in Ti goes to 0 as i → ∞, all of the sequences
(vik)i≥1 also converge to v∗. To prove that v∗ is a fixed point, let v∗ = (v∗0, v

∗
1, . . . , v

∗
n) and let

vik,m denote the mth coordinate of vik. Note that for all k,m, (vik,m)i≥1 converges to v∗m.

1Sperner’s lemma, Brouwer’s fixed point theorem, and the Knaster–Kuratowski–Mazurkiewicz lemma are
three equivalent results from three different areas of math. Sperner’s lemma is combinatorial, using a parity
argument and admitting an induction proof. Proving Brouwer’s fixed point theorem generally requires using
Sperner’s lemma or machinery from topology. The KKM lemma is a result on set coverings and can be
proved from the other two variants.
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Now, vik has the labeling k, so by the labeling we must have fk(v
i
k) < vik,k. Since f is

continuous, so is fk and so by Theorem 2.2, the limit point v∗ must satisfy

fk(v
∗) ≤ v∗k. (5.1)

Notice that we no longer have strict inequality, but in fact we actually want to show equality.
Since (5.1) holds for all k and

∑n
k=0 fk(v

∗) =
∑n

k=0 v
∗
k = 1 (because the points lie in the

standard n-simplex), we must have equality in (5.1) for all k. Hence, f(v∗) = v∗, so v∗ is a
fixed point of f , as desired. �

6. Existence of Nash Equilibrium

In this section, we will prove the existence of Nash equilibrium using Brouwer’s fixed point
theorem. This is a major theorem in economics and game theory. After one knows that Nash
equilibrium exist in certain games, it’s natural to study the quality of the equilibrium points
and ask whether those are reasonable outcomes. For instance, an equilibrium point may be
unstable; a small perturbation may incentivize players to move to a new equilibrium point.
Thus, while a reasonably simple result, the guaranteed existence of Nash equilibrium leads
us to deeper questions in game theory.

Remark 6.1. In 1950, John Nash proved the existence of Nash equilibrium using the Kakutani
fixed point theorem. In 1951, he proved it again using Brouwer’s fixed point theorem. Since
the Kakutani fixed point theorem is more general version of Brouwer’s fixed point theorem,
the second proof was an improvement over the first proof.

6.1. Game Theory Background. Nash equilibrium is John Nash’s proposed solution to
a non-cooperative game. In a non-cooperative game,

• each player knows other players’ strategies,
• and each player wants to maximize their expected payoff.

A combination of the players’ strategies is said to be a Nash equilibrium if no player can
increase their expected payoff by changing their own strategy if the other players keep theirs
unchanged. That is, no player has an incentive to change their strategy if everyone else keeps
their strategies the same.

We will refer back to the following example game repeatedly throughout this section.

Example. Alice and Bob play the following game:

• Each person tosses in a nickel or quarter into a hat.
• If the two coins from Alice and Bob were of the same type, then Alice gets both

coins. If they were of different value, then Bob gets both coins.

In general, each player prefers to toss in a nickel instead of a quarter, since playing a nickel
has a lower risk for the same profit margin. However, the players’ goals are in conflict with
each other, so just through the rules of the game, Alice and Bob are adversaries. A non-
cooperative game does not generally have to be adversarial, or even zero-sum; the quality
of the game depends on the set of possible player actions and the payoff functions for the
players.

With the intuitive explanation in mind, we will build up the technical definition for Nash
equilibrium. First, we introduce pure and mixed strategies.

Definition 6.2. Each player i has a set of pure strategies {πiα}. Each pure strategy corre-
sponds to doing a particular action with probability 1.
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Example. A pure strategy for Alice in the example game would be playing a nickel with
probability 1. Her other pure strategy (she has two) is playing a quarter with probability 1.
However, this is a dumb strategy because Bob has a counter-strategy that always lets him
win: play a quarter or a nickel with probability 1. In general, a pure strategy is not a good
strategy because the other players can exploit the predictability of a pure strategy.

How can a player make sure that the other players can’t predict his or her moves? One
way is to assign probabilities to each of the pure strategies and play those strategies with
that assigned probability.

Definition 6.3. A mixed strategy is given by a collection of non-negative numbers {ciα}
such that

∑
α ciα = 1. Player i plays the pure strategy πiα with probability ciα.

From this formulation, it is clear that the set of strategies for any player is a k-simplex
for some k. For precisely,

Proposition 6.4. Suppose player i has k pure strategies available to him. The set of strate-
gies for player i is the standard (k − 1)-simplex with k vertices

{(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}.

If we have finitely many players—say n players—then the set of all strategy combinations
of the n players is the direct product of the (k − 1)-simplices from each player. This direct
product is homeomorphic to Bm for some integer m > 0.

Now that we understand the players’ possible actions, let’s see what their objectives are.
Their goals are to maximize the value of their individual payout function:

Definition 6.5. The payoff is a function of all of the players’ strategies:

pi(S) = pi(s1, s2, . . . , sn)

is the expected payoff for player i if player j plays strategy sj (1 ≤ j ≤ n).

Example. We can easily understand the payouts for pure strategies for the example game.
The following table tells us (payout to Alice, payout to Bob) for the combinations of pure
strategies available to Alice and Bob.

Bob
N Q

Alice
N (5,−5) (−5, 5)
Q (−25, 25) (25,−25)

While not obvious at first, we want the payout functions to be n-linear. That is, if
si =

∑
α ciαπiα, then for all payout functions pj,

pj(S) =
∑
α

ciαpj(s1, . . . , si−1, πiα, si+1, . . . , sn).

The idea is similar to the linearity of expected value. Each combination of pure strate-
gies gives us a particular payout. Assigning probabilities to those pure strategies gives us
probabilities for combinations of pure strategies. Hence, to calculate the expected payoff, we
should multiply the payout for the combination of pure strategies by the probability that the
particular combination of pure strategies will be played. The linearity of the payout functions
implies that the payout function is uniquely determined by its values on the combinations
of pure strategies.
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6.2. Nash equilibrium. Now, we are ready to formally define Nash equilibrium.

Definition 6.6 (Nash equilibrium). A Nash equilibrium is a strategy combination S such
that for all i,

pi(S) = max
s∈Si

{pi(s1, s2, . . . , si−1, s, si+1, . . . , sn)},

where Si is the set of all strategies available to player i. That is, no player can increase their
expected payoff by changing their choice, if the other players’ strategies are fixed.

Theorem 6.7. Any non-cooperative n-player game in which each player has finitely many
pure strategies and any mixed strategy of the pure strategies exists, has a Nash equilibrium.

Example. Before we prove the existence of Nash equilibrium for non-cooperative games, let’s
calculate the Nash equilibrium points of the example game. Suppose Alice plays a nickel
with some probability p ∈ [0, 1]. With what probability q should Bob play a nickel so that
the game is in Nash equilibrium? The payout functions for Bob when q = 0, 1 are

pB((p, 1− p), (0, 1)) = 5p− 25(1− p), pB((p, 1− p), (1, 0)) = −5p+ 25(1− p).

If Bob plays a nickel with probability q, then the corresponding payout function is

pB((p, 1− p), (q, 1− q)) = (1− q) · pB((p, 1− p), (0, 1)) + q · pB((p, 1− p), (1, 0)).

Notice that if the payouts for q = 0, 1 are different for a given value of p, then Bob’s optimal
strategy is picking q = 0 or q = 1, depending on which of the payout functions is greater.
However, Alice’s optimal strategy is then picking p = 0 or 1. Since Alice and Bob’s goals
conflict, picking pure strategies will never give us a Nash equilibrium.

Thus, we should look at when pB((p, 1 − p), (0, 1)) = pB((p, 1 − p), (1, 0)), so that any of
Bob strategies are optimal. The payouts are equal when p∗ = 5

6
. With a similar argument,

we find that the Nash equilibrium should have q∗ = 1
2
. In fact, (5

6
, 1
2
) is a Nash equilibrium:

from the above argument, Bob’s payout is maximal for the given value of p. Similarly, Alice’s
payout is maximal for the given value of q. So, neither player has an incentive to change
their strategies.

Nonexample. Nash equilibrium may not exist if the set of choice is infinite and non-compact
(for comparison, the k-simplex is compact in Rk+1). Consider the 2-player game in which the
two players each pick a real positive number, and the player who picked the bigger number
wins. There is no equilibrium since any player can always pick a number bigger than the
previously played numbers. Another example is if the players must pick a real number in the
interval [0, 5), and the player with the bigger number wins. For this game, Nash equilibrium
does not exist, and this is fine since the set of choices is non-compact.

Proof of Existence of Nash equilibrium. The proof of the existence of Nash equilibrium is
clever, but not hard to follow. The only tricky part is actually coming up with a continuous
function from a space of strategy combinations to itself such that a fixed point of the function
is a Nash equilibrium. First, we define a function that measures improvement by switching
to a pure strategy:

φiα(S) = max(0, pi(s1, . . . , πiα, . . . , sn)− pi(S)).

Notice that the improvement function is positive if player i increases his or her expected
payout by switching to the αth pure strategy, and zero otherwise.
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We claim that φiα(S) = 0 for all α if and only if player i has no better strategy i.e., there
is no strategy with a greater expected payout if the other players keep their strategies fixed.
Suppose that player i has no better strategy. By definition, any strategy available to player
i must have a payout less or equal to pi(S). In particular, any pure strategy must be equally
good or worse than the current strategy for player i. Hence, the improvement function is
exactly 0. Conversely, suppose that φiα(S) = 0 for all α. Our current strategy si is at least
as profitable as any pure strategy πiα. Linearity of pi tells us that si is as profitable as any
mixed strategy. Hence, player i cannot increase pi by changing his strategy, so there is no
better strategy for player i.

It follows from the definition of Nash equilibrium that φiα(S) = 0 for all i, α if and only if
S is a Nash equilibrium.

With the improvement functions φiα, we define the continuous map for Brouwer’s fixed
point theorem. For each component si of S, define a modification s′i by

s′i =
si +

∑
α φiα(S)πiα

1 +
∑

α φiα(S)
.

This gives a map T : S 7→ S′ = (s′1, s
′
2, . . . , s

′
n). The set of strategy combinations is homeo-

morphic to Bm for some m > 0, and T is a continuous map. Hence, Brouwer’s fixed point
theorem gives us a fixed point of T . We claim that a strategy combination is a fixed point
of T if and only if it is a Nash equilibrium. To show this, we will prove that a strategy
combination is a fixed point of T if and only if φiα(S) = 0 for all i, α.

The right-to-left direction is easy: setting φiα(S) = 0 for all i, α means that s′i = si so
S = T (S) and S is a fixed point of T .

Now we prove the other direction. For any player i, we can order the pure strategies
currently in use (pure strategies πiα such that ciα′ > 0) in order of increasing payout. Hence,
we can find a “least profitable” strategy πiα′ such that ciα > 0. The linearity of pi implies
that

pi(s1, . . . , πiα′ , . . . , sn) ≤ pi(S),

or equivalently, φiα′(S) = 0. Our goal is to show that all pure strategies that player i uses
are equally profitable as πiα′ .

Let S = (s1, . . . , sn) be a fixed point of T . Then,

si =
si +

∑
α φiα(S)πiα

1 +
∑

α φiα(S)
, (6.1)

where we have just replaced s′i with si. Because φiα′(S) = 0 and the πiα are linearly inde-
pendent vectors, for the proportion of πiα′ in si to remain the same under the map T , the
denominator of the fraction in (6.1) must be 1. This implies that φiα(S) = 0 for all α, and
by extension, for all i, α. Thus, we have proved that the fixed point of the map T : S 7→ S′

is a Nash equilibrium. This proves the existence of a Nash equilibrium for n-player games
in which each player has finitely many pure strategies. �
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