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1. Inroduction

Fermat’s first mention of p = x2+y2 occurs in a 1640 letter to Mersenne while p = x2+2y2

and p = x2+3y2 occur later in a 1654 letter to Pascal. Although no proofs for these assertions
were given by Fermat in the letters, Fermat states the result as theorems. Fermat stated
that

• Every prime number which surpasses by one a multiple of four is composed of two
squares.

• Every prime number which surpasses by one a multiple of three is composed of a
square and triple of another square.

• Every prime number which surpasses by one or three a multiple of eight is composed
of a square and a double of another square.

Later Fermat adds that he has solid proofs for the above assertions. Fermat also studied
beyond p = x2 + y2, p = x2 + 2y2, p = x2 + 3y2, his study for x2 + Ny2 = p where N = 5
was found in a letter to Digby in the year 1658 quoting that

• If two primes, which end in 3 or 7 and surpass by three a multiple of four, are
multiplied, then their product will be composed of a square and a quintuple of another
square. But Fermat stated that he conjectured it and admitted that he can’t prove it!
After Fermat, Euler studied the question Characterizing all the primes p which can
be written in the form p = x2 + Ny2 for more than 40 years of his life and achieved
remarkable proofs for the same.

In this paper, we will develop the theory of binary quadratic forms and elementary genus
theory, which together give an interesting and surprisingly powerful elementary technique
in algebraic number theory. But due to some Limitations to binary quadratic forms and
elementary genus theory, we will see the theory of Cubic reciprocity and Biquadratic (quartic)
reciprocity to prove some interesting results.This is all motivated by a problem in number
theory that dates back at least to Fermat: for a given positive integer n, characterizing all the
primes which can be written p = x2 + ny2 for some integers x, y. Euler studied the problem
extensively, and was able to solve it for N = 1, 2, 3, 4. However after Euler, Gauss and
Langrange made a great contribution to this field by Class field theory and binary quadratic
forms. However Euler solved the four theorems of Fermat using Reciprocity method and
Fermat solved them using descent method. At the end of the Binary quadratic forms section
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we will prove the following four theorems of Fermat along with n = 7.

1) p = x2 + y2, for some x, y ∈ Z if and only if p ≡ 1 (mod 4) or p = 2

2) p = x2 + 2y2, for some x, y ∈ Z if and only if p ≡ 1, 3 (mod 8), or p = 2

3) p = x2 + 3y2, for some x, y ∈ Z if and only if p ≡ 1 (mod 3), or p = 3

4) p = x2 + 4y2, for some x, y ∈ Z if and only if p ≡ 1 (mod 4)

As we will see near the end of the paper, the techniques are not enough for us to char-
acterize primes of the form p = x2 + ny2 for arbitrary n, but what they are able to achieve
is remarkable in its own right. This paper will assume knowledge of basic field theory and
group theory and the most important, Reader should have knowledge of quadratic reciprocity
because quadratic reciprocity is the core of this paper.

At the end of the binary quadratic forms section, we will be able to use the theory of
reduced forms to characterize primes of the form p = x2 + ny2 for N = 1, 2, 3, 4, 7. This
theory is elementary but quite powerful, and to develop it, we first must define some concepts
which will serve as the foundation for the rest of our discuss. But before that we have to get
familiar with some concepts, definitions, and theorems in binary quadratic forms so that at
the end we can use them all for our basic question of this paper to solve x2 + ny2 = p where
n = 1, 2, 3, 4, 6, 7.

2. Binary Quadratic Forms

The study of integral binary quadratic forms in two variablesthat is f(x) = ax2 + bxy +
cy2 began with Langrange who introduced the concept of Discriminants, equivalence and
reduced forms. When these theories of Langrange are combined with Gauss notion of proper
equivalence, one has all the ingredients to develop the theory of binary quadratic forms.Most
of the terminologies are due Gauss, though many of the terms he introduced refer to the
concepts used implicitly by Langrange. We have the following definitions and theorems:

Definition 2.1. A binary quadratic form is a function in two variables f(x, y) = ax2+bxy+
cy2 where a, b, c ∈ Z.

Remark 2.2. We say that a binary quadratic form f(x, y) = ax2 + bxy+ cy2 where a, b, c ∈ Z
is primitive if a, b, c are relatively prime.

Now a question comes that can an integer be represented by a binary quadratic form and
if yes, then what’s the condition which implies the same. For this question we have the
following definitions and theorems.

Definition 2.3. An integer m is represented by a Binary quadratic form f if there exists
x, y ∈ Z such that f(x, y) = ax2 + bxy + cy2 = m. Further if those x, y are prime then it is
said that integer m is properly represented in f .

Definition 2.4. A binary quadratic form is said to be positive semidefinite if it only rep-
resents non-negative integers, and it is said to be negative semidefinite if it only represents
non-positive integers. It is said to be indefinite if it represents both positive and negative
integers. A (positive or negative) semidefinite binary quadratic form f is said to be (positive
or negative) definite if, whenever f(x, y) = 0, then x, y = 0
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We got some great definitons so far and now we should define some relation between two
binary quadratic forms. Which brings us the following definition and theorem.

Definition 2.5. Two binary quadratic forms f(x, y) and g(x, y) are equivalent if there exist
p, q, r, s ∈ Z such that f(x, y) = g(px+qy, rx+sy) and ps−qr = ±1 Moreover if ps−qr = 1
then f(x, y) and g(x, y) are said to be properly equivalent and if ps− qr = −1 then f(x, y)
and g(x, y) are said to be improperly equivalent (Note that it is possible for two forms to be
both properly equivalent and improperly equivalent)

Theorem 2.6. A binary quadratic form f(x, y) properly represents an Integer m if and only
if f(x, y) is properly equivalent mx2 + bxy + cy2 for some b, c ∈ Z (This is nothing but a
result of Definition 2.3)

Proof. It implies that, Consider for a binary quadratic form f(x, y) = ax2 + bxy + cy2,
suppose f(p, r) = m where p, r are relatively prime. Since p, r are relatively prime there
exist integers q and s such that ps− qr = 1 (properly equivalent).Then

f(px+ qy, rx+ sy) = f(p, r)x2 = (2apq+ bps+ brq+ 2crs)xy+ f(q, s)y2 = mx2 + b′xy+ c′y2

f(px + qy, rx + sy) = mx2 + bxy + cy2 for some p, q, r, s ∈ Z such that ps − qr = 1, then
f(p, r) = m where p, r are relatively prime. �

Now we define Discriminant of the binary quadratic forms which plays the most important
role in proving our basic question to characterize primes that can be represented as x2 +Ny2

Definition 2.7. Discriminant of a binary quadratic form f(x, y) = ax2+bxy+cy2 is defined
as D = b2 − 4ac (proof for this theorem is for the reader)

Theorem 2.8. If the discriminant D of f(x, y) = ax2 + bxy + cy2 is negative and a > 0
(respectively a < 0), then f(x, y) is positive definite (respectively, negative definite). If D is
positive then we say f(x, y) is indefinite.

We get these terms because if f(x, y) is positive definite,f(x, y) only represents positive
integers (the analogous statement holds for negative definite forms), and if f(x, y) is indefi-
nite, it represents both positive and negative integers. We will leave these facts to the reader
to verify.

Theorem 2.9. Show that Discriminant of 2 equivalent binary quadratic forms is equal

Proof. Let’s consider two binary quadratic forms suppose f(x, y) = ax2 + bxy + cy2 and
F (X, Y ) = AX2 +BXY +CY 2 are equivalent with F (X, Y ) = f(αX + βY + γX + δY ) for
some Integers α, β, γ, δ satisfying the condition αδ − βγ = ±1 (as they are equivalent),

A = f(α, γ) = aα2 + bαγ + cγ2

B = 2aαβ + b(αδ + βγ) + 2cγδ

C = f(β, δ) = αβ2 + bβδ + cδ2

and now we can easily compute b2−4ac = (αδ−βγ)2 and we know that αδ−βγ = ±1 hence
(αδ − βγ)2 = 1 and hence it follows that determinants of both of the forms is equal. �

Theorem 2.10. Let D be an integer congruent to 0 modulo 4, and m be an odd integer
relatively prime to D. Then m is properly represented by a primitive form of discriminant
D if and only if D is a quadratic residue modulo m.
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Proof. Suppose that primitive Binary quadratic form f(x, y) properly represents m. Then
we know that f(x, y) is properly equivalent to mx2 + bxy + cy2 by Theorem 1.8 and hence
discriminant (D) = b2 − 4ac for some b, c ∈ Z. Therefore b2 ≡ D (mod m). Let

b′ =

{
b, when b is even

b+m, if not

Then D = b′2 mod m and since m is odd and D ≡ 0 (mod 4), D and b′ both are even.
Which implies that D ≡ b′2 (mod m) ( since 4 divides both D and b′2, and thus from earlier
we get D ≡ b′2 − 4mc for some c ∈ Z. hence we have the binary quadratic form f(x, y) =
mx2 + bxy+ cy2 which has discriminant D, properly representing m (since f(1, 0) = m),and
is primitive since m is prime to D, which finishes proof of our Theorem. �

Theorem 2.11. Let n be an integer and p be an odd prime that does not divide n. Then p

is represented by a primitive form of discriminant −4n if and only if
(
−n
p

)
= 1

Proof. We know that a primitive Binary quadratic form represents a prime p if and only if
it properly represents p. Hence the theorem is an immediate consequence of theorem 1.12

and Legendre symbol property, since
(
− 4n
p

)
=
(
− n
p

)(
2
p

)2
=
(
− n
p

)
�

Theorem 2.12. A primitive positive definite Binary quadratic form ax2 + bxy + cy2 where
all a, b, c are relatively prime, is reduced if and only if

1. | b |≤ a ≤ c, 2. | b |≥ 0 ⇐⇒ b = a or b = c

Primitive positive definite forms have a very important property, illustrated in the follow-
ing theorem.

Theorem 2.13. Every primitive, positive definite form is properly equivalent to a unique
reduced form.

Proof. The proof is a bit longer but is elementary to understand. Let’s consider a primitive
positive definite binary quadratic form f(x, y) we have to prove that it is properly equivalent
to another binary quadratic form satisfying the condition | b |≤ a ≤ c, and out of all the other
binary quadratic forms equivalent to f(x, y), Let g(x, y) be a binary quadratic form such
that the minimal | b | is minimal.We already know that for any integer m, g(x + my, y) =
ax2 + (2am + b)xy + c′y2 is always properly equivalent to g(x, y), so if a <| b |, we can
choose m such that | 2am + b |<| b |, which contradicts our choice of b. Thus as a result
of contradiction we get a ≥| b |. Similarly it can be proved that c ≥| b |. If a > c, we
simply need to exchange the outer coefficients, which is done in the properly equivalent form
g(−y, x) and the resulting Binary quadratic form ax2 + bxy+ cy2 also satisfies the condition
| b |≤ a ≤ c

This form will already be reduced if b < 0 and either a = −b or a = c. If ax2 + bxy + cy2

isn’t reduced, ax2 − bxy + cy2 will be reduced always, so we just need to prove that the two
Binary quadratic forms are equivalent if and onlyy if a = −b or a = c Suppose if a = −b
then (x, y) 7−→ (x + y, y) takes ax2 − axy + cy2 to ax2 + axy + cy2. Suppose a = c then
(x, y) 7−→ (−y, x) takes ax2−bxy+ay2 to ax2 +bxy+ay2 Hence we have proved that f(x, y)
is properly equivalent to a Reduced form. Now all we have to do is that the reduced form
is Unique, which we will prove by showing that different reduced forms cannot be properly
equivalent. The part to prove that it’s unique is left to the reader. �
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Definition 2.14. Two forms are said to be in the same class if they are properly equivalent.

Theorem 2.15. Let D < 0 be fixed. Then the number h(D) of equivalence classes of
primitive positive definite forms of discriminant D is finite, and h(D) is equal to the number
of reduced forms of discriminant D.

Proof. So in this theorem we just need to prove that the number of reduced forms of a
discriminant D is finite and the rest of the part will easily follow from theorem 1.15

We know that discriminant of a binary quadratic form ax2 + bxy + cy2 is b2 − 4ac. We
also know that for any reduced binary quadratic form ax2 + bxy + cy2, we have b2 ≤ a2 and
a ≤ c. Hence we obtain that

−D = −(b2 − 4ac) = 4ac− b2 ≥ 4a2 − a2 = 3a2 =⇒ | b |≤ a ≤
√
−D/3

=⇒ We have finite number of possible values for a, b. The concept of discriminant implies
that given values for a, b and D have only one possible value for c and hence this finishes
our proof. �

Another consequence of Theorem 3.13 is that we have the following improvement to The-
orem 3.11

Theorem 2.16. Let n be a positive integer and p an odd prime not dividing n. Then(
−n
p

)
= 1 if and only if p is represented by one of the h(−4n) reduced forms of discriminant

−4n

Proof. By theorem 3.11 we get that
(
−n
p

)
= 1 if and only if p is properly represented by a

primitive form of discriminant −4n. Moreover, the proof of Lemma 3.10 shows that we can
find such a quadratic form whose coefficient in front of x2 is p. Hence, by (3.9), the form
properly representing p is primitive positive definite, and by Theorem 3.15, this occurs if
and only if p is represented by one of the h(−4n) reduced forms of discriminant −4n �

This theorem tells us something very interesting: whether a prime p is represented by a
reduced form of discriminant −4n is simply a matter of whether there is a solution to the
congruence x2 ≡ −n (mod p). In fact, we can obtain a more general result (although the
discriminant −4n is what interests us).

So far we have gathered the concept of binary quadratic forms in a simpler way! Now
we are ready to solve the most awaited problem of this paper that is P = x2 + ny2 for
N = 1, 2, 3, 5, 7

3. Primes of the form x2 + ny2 for n = 1, 2, 3, 4, 7,k2

Let’s summarise all theorems of Binary quadratic forms so far; Theorem 1.13 tells us that
a prime p is represented by a Primitive Binary quadratic form of the discriminant −4n if and

only if
(
− n
p

)
= 1, Since a form with a negative discriminant representing positive integers

must be positive definite, we can combine this with Theorem 1.15 to get that a prime p is

represented by a reduced form of discriminant −4n if and only if
(

n
p

)
= 1, Finally, Theorem

1.16 tells us that the reduced forms of a given discriminant are finite, and actually gives us
an explicit bound on the coefficients. Noting that x2 +ny2 is a reduced form, it is now clear
just how useful these results could be to us. And, in fact, we now have all that we need
to characterize primes of the form p = x2 + ny2, for a few values of n. To demonstrate the
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power of these theorems and as reward for our efforts so far, we will now prove the four
theorems of Fermat, and also characterize primes of the form x2 + 7y2 Amazingly, the proofs
now require nothing more than some easy computation.

Theorem 3.1. For a Prime p, p = x2+y2, for some x, y ∈ Z if and only if p ≡ 1 (mod 4)
or p = 2

Proof. We require an odd prime so we will deal with the case p = 2 separately.Theorem 1.13
implies that for an odd prime p , p is represented by a reduced form of discriminant −4 if

and only if
(
− 1
p

)
= 1. But first we have to determine all the reduced forms of discriminant

−4. From theorem 1.16 we know that | b |≤ a ≤
√

4/3 < 2, ifa = b = 0, then D = 0
resulting a = 1. 1 − 4c = −4 which gives no solution and hence b = 0 and hence the only
reduced form of the discriminant −4 is x2 + y2. Now we only need to find p in general for(
− 1
p

)
= 1, which is a well known that is p ≡ 1 (mod 4), which proves our Theorem.

�

Theorem 3.2. For a Prime p, p = x2 + 4y2, for some x, y ∈ Z if and only if ⇐⇒ p ≡ 1
(mod 4)

Proof. The Proof goes similar as last theorem’s as we can write 4y2 as (2y)2 which becomes
our new y′ and hence proceeding similar way as in the last proof we obtain that p ≡ 1
(mod 4), which proves our Theorem. Next Theorem is generalisation of this theorem. �

Theorem 3.3. For a Prime p, p = x2+Ny2, for some x, y, z ∈ Z, N = z2 if and only if p ≡
1 (mod 4)

Proof. This is a generalised form of last theorem where we take N = z2, z ∈ Z. We just
substitute Ny2 by z2y2 = (zy)2 and we get new y” = (zy)2 and then proceeding the similar
way as in Last theorem we obtain p ≡ 1 (mod 4), which proves our Theorem. We have
proved for every square integer N . �

Theorem 3.4. p = x2 + 2y2, for some x, y ∈ Z if and only if p ≡ 1, 3 (mod 8), or p = 2

Proof. We require an odd prime so we will deal with the case p = 2 separately. Theorem 1.13
implies that for an odd prime p , p is represented by a reduced form of discriminant −8 if

and only if
(
− 2
p

)
= 1. But first we have to determine all the reduced forms of discriminant

−4. From theorem 1.16 we know that | b |≤ a ≤
√

8/3 < 2, Thus a = 1 and as 1 − 4c = 8
has no integer solutions so x2 + 2y2 is the only reduced form of the discriminant −8. Now

we only need to find p in general for
(
− 2
p

)
= 1. We know that now we only need to find

p in general for
(

2
p

)
= 1 only and only when p ≡ 1, 7 (mod 8), Hence we obtain Now we

only need to find p in general for
(
− 2
p

)
= 1 , so

(
− 2
p

)
=
(

2
p

) (
− 1
p

)
=⇒ p ≡ 1, 3 (mod 8)

which proves our theorem. �

Theorem 3.5. p = x2 + 3y2, for some x, y ∈ Z if and only if p ≡ 1 (mod 3), or p = 3

Proof. We know that theorem 1.13 implies that p should not divide n and hence we handle
the case p = 3 separately. For p > 3 p is represented by a reduced form of discriminant −12

if and only if
(
− 3
p

)
= 1. But first we have to determine all the reduced forms of discriminant
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−4. From theorem 1.16 we know that | b |≤ a ≤
√

12/3 = 2, now showing again that there
exist no solution we conclude again that x2 + 3y2 is the only reduced Binary quadratic form
of the discriminant −12, the numerator is no longer congruent to 1 modulo 4 and hence by

law of quadratic reciprocity we obtain that we have
(
−3
p

)
=
(

3
p

)(
−1
p

)
=
(
p
3

)
By some basic

knowledge of field theory and squares in a group we get F∗32 = 1 =⇒ p ≡ 1 (mod 3) which
proves our theorem. �

Theorem 3.6. p = x2 + 7y2, for some x, y ∈ Z if and only if p ≡ 1, 2, 4 (mod 7), or p = 7

Proof. Note that we don’t always need to show that there exists no solution for bounds as
we know that h(−4N) = 1 only if N = 1, 2, 3, 4, 7. We know that theorem 1.13 implies that
p should not divide n and hence we handle the case p = 7 separately. p is represented by

a reduced form of discriminant −28 if and only if
(
− 7
p

)
= 1. This time we don’t need to

show that x2 + 7y2 is the only reduced Binary quadratic form of the discriminant −28 as we
have already given that in the note! 28. By the same logic as in the previous proof, we get(
− 7
p

)
=
(

7
p

) (
− 1
p

)
=
(
p
7

)
. By some basic knowledge of field theory and squares in a group

we get F∗72 = 1, 2, 4 =⇒ p ≡ 1, 2, 4 (mod 7) which proves our theorem �

The power of our quadratic form theorems should be quite evident now. However, without
adding any further theory, this approach suffers from some very serious limitations. All four
of the previous proofs were similar in that there was only one reduced form of the given
determinant. However, this is not true in the general case. In fact, there are no other values
of n where x2+Ny2 is the only reduced form of discriminant −4n, Trying the same approach

on p = x2 + 5y2 for instance, we get
(
− 5
p

)
= 1 if and only if p is of the form x2 + 5y2 or

of the form 2x2 + 2xy + 3y2. In order to distinguish between these two cases, we will need
some elementary genus theory

4. Elementary Genus Theory

Let’s have a look at some definitions, concept and Theorems in Elementary genus theory
and use them to solve for x2 +Ny2 for N = 5, 6.

There is a very natural homomorphism related to the Legendre symbol that we will use
extensively in this section. Its usefulness to us will become almost immediately apparent, so
we will begin this section simply by constructing it. So let’s go through some concepts and
definitions in Elementary Genus Theory!

Theorem 4.1. Let D (Discriminant) = 4n for some n ∈ Z. Then always there is a unique

χ : (Z/DZ)∗ −→ ±1 such that χ([p]) =
(
D
p

)
for all primes p that do not divide D

Of course, that gives us the following for primes p that do not divide −4n p is represented

by a binary quadratic form of discriminant −4n ⇐⇒
(
N
p

)
= 1 if and only if [p] ∈ kerχ

This seems like it might be useful as ker χ is a group, and so we might hope to use the
algebraic properties of this group to learn more about the forms of a given discriminant. As
we will soon demonstrate, there is a useful relationship between a certain subgroup of ker
χ and the different reduced forms of discriminant 4n. In fact, for quite a few values of n,
we get the best result possible: all the different reduced forms of discriminant 4n represent
disjoint subsets of ker χ, and they represent a prime p if and only if [p] is in the corresponding



8 SARTH CHAVAN

subset. This all falls under genus theory, which, for our purposes, is the characterization of
how different forms do or don’t intersect in the values that they represent. We really only
need one more theorem to be able to characterize primes of the form p = x2 +Ny2 for about
50 more values of N . In this section we will prove the following theorems

1) p = x2 + 6y2 ⇐⇒ p ≡ 1, 7 (mod 24)

2) p = x2 + 10y2 ⇐⇒ p ≡ 1, 9, 11, 19 (mod 40)

3) p = x2 + 13y2 ⇐⇒ p ≡ 1, 9, 17, 25, 29, 49 (mod 52)

4) p = x2 + 15y2 ⇐⇒ p ≡ 1, 9, 31, 49 (mod 60)

5) p = x2 + 21y2 ⇐⇒ p ≡ 1, 25, 37 (mod 84)

6) p = x2 + 22y2 ⇐⇒ p ≡ 1, 9, 15, 23, 25, 31, 47, 49, 71, 81 (mod 88)

7) p = x2 + 30y2 ⇐⇒ p ≡ 1, 31, 49, 79 (mod 120)

although it will require a few lemmas and definitions. Now Let’s have a look at the required
definitions and lemmas.

Definition 4.2. Suppose that D < 0 satisfying the condition D ≡ 0, 1 (mod 4) then we
define the Principal form of the Discriminant D to be x2 − D

4
y2 if D ≡ 0 (mod 4) and

x2 + xy + 1−D
4
y2 if D ≡ 1 (mod 4)

Question 4.3. The principal form of discriminant D actually has discriminant D.

The part of verifying that the principal form of discriminant D actually has discriminant
D is now left to the reader.

Theorem 4.4. If f(x, y) represents an integer m, then m can be written as d2m′, where
f(x, y) properly represents m′.

Proof. We choose x, y such that f(x, y) = m where x, y ∈ Z. Let d = gcd(x, y), then we get
x = dx′ and y = dy′ where x′, y′ are relatively prime.Thus we get

f(x, y) = f(dx′, dy′) = m = a(dx′)2 + b(dx′)(dy′) + c(dy′)2

a(dx′)2 + b(dx′)(dy′) + c(dy′)2 = d2(ax′2 + bx′y′ + cy′2) = d2(f(x′, y′)) = d2m′

which proves our Theorem. �

Lemma 4.5. For any prmitive Binary quadratic form f(x, y) = ax2 + bxy+ cy2 and Integer
M , then f(x, y) = ax2 + bxy + cy2 properly represents infinitely many integers relatively
prime to M

Proposition 4.6. Let D = −4N for some positive integer N and let f(x, y) be a primitive
binary quadratic form of Discriminant D, then,

• 1) The values in (Z/DZ)∗ represented by principal form of Discriminant D forms a
subgroup H of kerχ

• 2) The values in (Z/DZ)∗ represented by the Principal form of discriminant D forms
a coset of H in kerχ

This preposition plays an important role in proving our question of primes of the form
x2 +Ny2. Now we will have couple of more definitions and a theorem and then we are ready.
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Definition 4.7. Let D = −4n for positive n, and let H be as in Preposition 4.6. For
any coset H of H, the genus of H ′ is the set of all quadratic forms of discriminant D that
represent H ′ modulo D.

Theorem 4.8. Let D = −4n for some positive integer n, and let H be as in Preposition 4.6.
If H ′ is a coset of H in kerχ and p is an odd prime not dividing D, then p is represented by
a reduced form of discriminant D in the genus of H ′ if and only if [p] is in H ′

Proof. As we have seen various lemmas and definitions in Elementary Genus Theory so
proving this theorem goes a lot easy. The only thing we need to note that distinct cosets
of H must be disjoint and then the proof of this theorem easily or we can say immediately
follows from lemma 4.5 and the theorem 2.3 from the binary quadratic forms section! The
part of proving is left to the reader using the Hint given above. �

This theorem allows us (in many cases, at least) to make a distinction between the values
represented by some of the different reduced forms of the same discriminant. With it, we are
now ready to prove the conjecture of Euler’s which we gave in the introduction (we chose
n = 6 to avoid filling the paper with many more Legendre symbol calculations, which at this
point should feel trivial to the reader). So let’s start!

Theorem 4.9. p = x2 + 6y2, for some x, y ∈ Z if and only if p ≡ 1, 7 (mod 24)

Proof. So let’s begin with the proof! Let’s consider a prime p > 3. Now consider a reduced
binary quadratic form say f(x, y) = ax2 + bxy + cy2 with Discriminant −24 and satisfying

the condition | b |≤ a ≤
√
−24/3 < 3 Now if a = 1 then 1 − 4c = −24 has no integer

solutions, Hence b = 0 and binary quadratic form f(x, y) = x2 + 6y2. Now if a = 2 then
1− 8c = −24 and 4− 8c = −24 have no integer solutions, and hence binary quadratic form
f(x, y) = 2x2 + 3y2. By properties of Legendre symbol we get that(

−6

p

)
=

(
2

p

)(
−3

p

)
= 1

where we know that
(

2
p

)
= 1 ⇐⇒ p ≡ 1, 3 (mod 8) and we have already proved in theorem

3.5 that
(
−3
p

)
= 1 ⇐⇒ p ≡ 1 (mod 8) which gives us the below result(
−6

p

)
=

(
2

p

)(
−3

p

)
= 1 ⇐⇒ p ≡ 1, 5, 7, 11 (mod 24)

Which obviously implies that kerχ = 1, 5, 7, 11. Now We can see quite easily that of those
values, x2 + 6y2 represents only 1 and 7 that is nothing but H = 1, 7 which implies that
2x2 + 3y2 represents 5 and 11 and hence it can’t be in the Genus of H. The genus of H is
nothing but simply x2 +6y2 and the forms properly equivalent to it. Therefore if p is a prime
of the form x2 + 6y2 ⇐⇒ p ≡ 1, 7 (mod 24) or p = 2, 3 which proves our theorem! �

The Elementary Genus theory works only when the Principal genus consists of only one
class, for then we get the congruence conditions that characterize p = x2 + Ny2. This is
what happened when we proved for n = 6. Similarly as we proved for n = 6 we can prove
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that

2) p = x2 + 10y2 ⇐⇒ p ≡ 1, 9, 11, 19 (mod 40)

3) p = x2 + 13y2 ⇐⇒ p ≡ 1, 9, 17, 25, 29, 49 (mod 52)

4) p = x2 + 15y2 ⇐⇒ p ≡ 1, 9, 31, 49 (mod 60)

5) p = x2 + 21y2 ⇐⇒ p ≡ 1, 25, 37 (mod 84)

6) p = x2 + 22y2 ⇐⇒ p ≡ 1, 9, 15, 23, 25, 31, 47, 49, 71, 81 (mod 88)

7) p = x2 + 30y2 ⇐⇒ p ≡ 1, 31, 49, 79 (mod 120)

We can prove above assertions easily as we proved for n = 6. Because for n = 6, 10, 13, 15, 21,
22, 30 the Principal genus consists of only 1 class, and hence the part of proving those
assertions is left to the reader.

Again, this technique allows us to prove a quite impressive result in number theory very
easily, needing only a simple, very procedural proof. We encourage the reader to try with
p = x2 + 5y2 to get a further feel of genus theory; as in Theorem 4.9, the proof amounts
to little more than basic computations. The power of this technique is fairly remarkable.
But while the addition of elementary genus theory let us characterize primes of the form
p = x2 +Ny2 for a lot of values n that the theory of reduced forms alone fell short on, it too
has serious limitations. It should be clear that our proof of Theorem 4.9 depended on the fact
that the principal form of discriminant −24 was the only reduced form in its genus. From
a probabilistic standpoint, though, this is almost never the case. The Genus Theory cannot
solve our basic question for all n. For instance let’s consider a reduced binary quadratic form
f(x, y) = ax2 + bxy + cy2 with determinant D = −108, here the Genus theory is completely
useless as all reduced binary quadratic forms x2 + 27y2, 4x2 + 2xy + 7y2, 4x2 − 2xy + 7y2

lie in the same genus and hence we cannot distinguish them! And so, to finish our paper,
we will use genus theory to prove one last conjecture of Euler’s, which is about primes of
the form p = x2 + 14y2 This is a noteworthy achievement in its own right, but will also
clearly illustrate some of the limitations of the technique we’ve developed. If we want a
better characterization, we would need some further theory that falls outside the scope of
this paper. I encourage the interested reader to study class field theory in order to learn
more about this problem.

Theorem 4.10. For a prime p where p 6= 2, 7, either p or 2p is of the form x2 + 14y2 ⇐⇒
p ≡ 1, 9, 15, 23, 25, 39 (mod 56), and 3p is of the form x2 + 14y2 ⇐⇒ p ≡ 3, 5, 13, 19, 27, 45
(mod 56)

Proof.

p =

{
x2 + 14y2

2x2 + 7y2

}
if and only if p ≡ 1, 9, 15, 23, 25, 39 (mod 56)

3p = x2 + 14y2 ⇐⇒ p ≡ 3, 5, 13, 19, 27, 45 (mod 56)

Similarly as we did in the last theorem, we find that only reduced forms of the discriminant
D = −56 are x2 + 14y2, 2x2 + 3y2, 3x2 + 2xy + y2, 3x2 − 2xy + y2, and now we need to find
when (

−14

p

)
= 1
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By properties of Legendre symbol we get that(
−14

p

)
=

(
2

p

)(
7

p

)(
−1

p

)
= 1

where we know that
(

2
p

)
= 1 if and only if p ≡ 1, 3 (mod 8) which gives us the below result(

−14

p

)
=

(
2

p

)(
−7

p

)
= 1

if and only if p ≡ 1, 3, 5, 9, 13, 15, 19, 23, 27, 39, 45 (mod 56), Now it’s easy to see that among
the set {1, 3, 5, 9, 13, 15, 19, 23, 27, 39, 45} the reduced binary quadratic form x2 + 14y2 only
represents 1, 9, 15, 19, 23, 39 but reduced binary quadratic form 2x2+7y2 obviously represents
9 and it must be in the same genus as the principal form and hence we cannot distinguish
between both of them! Similarly we also see that reduced binary quadratic form 3x2±2xy+
5y2 represents the numbers 3, 5, 13, 19, 27, 45, and hence share their own genus! It’s quite
clear that p is of the form 2x2+14y2 if and only if 2p is of the form x2+14y2, so all it remains
to prove is that 3p is of the form x2 + 14y2 if and only if p ≡ 3, 5, 13, 19, 27, 45 (mod 56).
as we know that reduced binary quadratic form 3x2 ± 2xy + 5y2 represents the numbers
3, 5, 13, 19, 27, 45, and thus it suffices to prove that 3p is of the form x2+14y2 if and only if p
is either of the form 3x2 + 2xy+ 5y2 or 3x2− 2xy− 5y2. Now if we take p = 3x2± 2xy− 5y2

then we get 3p = 9x2±6xy+ 15y2 = (3x± y)2 + 14y2. Conversely suppose 3p = x2 + 14y2, if
y was a multiple of 3 then y2 and x2 would obviously be multiples of 9, which would imply
p to be a multiple of 3 which can’t be possible as p is a prime and hence a contradiction!
Thus contradiction implies that we can express y in the form 3k ± 1 where k ∈ Z. Either
way 14y2 ≡ 2 (mod 3) resulting to x2 ≡ 1 (mod 3) which means that we can express x as
3t± (3k ± 1) where k ∈ Z and hence we get that

p = 3t2 ± 2t(3k ± 1) + 5(3k ± 1)2

which completes our proof. �

In the previous section, we noted that there are only finitely many cases when the number
of reduced forms h(−4n) of discriminant−4n is equal to 1. This prompts the following similar
question: Are there finitely many discriminants of the form −4n for which the principal genus
consists of only the principal form? The answer to this question is yes; there are indeed only
finitely many such discriminants. It turns out that all genera of forms of discriminant −4n
consist of the same number of classes. So, if the principal genus is to contain only the
principal form, then all genera must consist of only one class. This is related to the study of
convenient numbers, which we have not discussed. There are only finitely many convenient
numbers, and a positive integer n is a convenient number if and only if the genera of forms
of discriminant −4n consist only of a single class. For a more thorough treatment of this
topic, reference sections 3.B and 3.C of Cox [1].

5. Cubic and Biquadratic Reciprocity

5.1. Cubic Reciprocity. In the previous two sections, we have made significant progress
on the question of when a prime p can be represented by the quadratic form x2 + Ny2.
In doing this, we formulated necessary and sufficient conditions for numerous values of n.
Besides developing some theory on quadratic forms and genera, the most advanced number
theoretic tool we have used has been quadratic reciprocity.
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As the discussion in the previous section highlighted, only certain cases can be solved
with these methods. For other values of n, cubic and biquadratic reciprocity, which are
in a sense generalizations of quadratic reciprocity, need to be utilized. Just as quadratic
reciprocity tells us when the congruence x2 ≡ a (mod p) has a solution, cubic and biquadratic
reciprocity determine when the respective congruences x3 ≡ a (mod p) and x4 ≡ a (mod p)
have solutions. In this section, we will answer these questions to show when a prime can
be represented by the forms x2 + 27y2 and x2 + 64y2. Before we can formulate the Law of
Cubic Reciprocity, we need to investigate some of the properties of the ring Z[ω] = {a+ bω |
a, b ∈ Z} where ω = −1+

√
−3

2
is one of the cube roots of unity. We now review some basic

definitions of abstract algebra.
Using Cubic Reciprocity, we will show that a prime p can be represented by the form

x2 + 27y2 if and only if p ≡ 1 (mod 3) and 2 is a cubic residue of p.

Definition 5.1. Let R be an integral domain

• An element u in R is called a unit if u divides 1
• Two elements a and b in R are called associates if a = bu for some unit u
• An element p in R is said to be irreducible if a | p implies that a is either a unit or

an associate of p
• A non-unit p in R is called a prime if p 6= 0 and p | ab implies that a is either a unit

or an associate of p.

Definition 5.2. The ring R is said to be a unique factorization domain (UFD) if every
non-zero element r in R, which is a non-unit, has the following properties:

• r can be written as a finite product of (not necessarily distinct) irreducibles pi of R.
That is r = p1p2p3 · · · pn
• if r = q1q2 · · · qn is another factorization of r into irreducibles, then m = n, and there

is some numbering such that pi and qi are associates for i = 1, 2, ..., n.

A very important property of the ring Z[ω] is that it is closed under complex conjugation.
Indeed, let α = a+ bω be an element in Z[ω] then,

α = a+ bω = a+ bω2 = a+ b(−1− ω) = (a− b)− bω ∈ Z[ω]

This allows us to make the following definition.

Definition 5.3. Let α = a+ bω be an element of Z[ω], We define norm of α, N(α), by the
formula

N(α) = αα = a2 − ab+ b2

Lemma 5.4. An element α contained in Z[ω] is a unit if and only if N(α) = 1, the units
of Z[ω] are therefore ±1,±ω,±ω2.

Proof. If N(α) = 1, then αα = 1 which implies that α is a unit. If α is a unit, then there
exists an element β of Z[ω] such that αβ = 1, which again implies that N(α)N(β) = 1.
Therefore N(α) = 1, since both N(α) and N(β) both are positive integers.

Now suppose we take α = a+ bω is a unit, Then,

a2 − ab+ b2 = 1 which is same as 4a2 − 4ab+ 4b2 = (2a− b)2 + 3b2

There we get two possibilities:

2a− b = ±1 and b = ±1 or 2a− b = ±2 and b = 0
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Solving these six equations we obtain that the units are ±1,±ω,±(1 + ω). we know that

1 + ω + ω2 = 0

and hence we get that ±1,±ω,±(1 + ω) are the same as ±1,±ω,±ω2 �

Lemma 5.5. If π is a prime in Z[ω], then there is a rational prime p such that N(π) = p
or p2. If N(π) = p then π is not associated to a rational prime, whereas if N(π) = p then
π2 then it is an associated to a rational prime

Proof. We know that N(π) = ππ > 1 is some integer, it is a product of rational primes.
Hence π | p for some rational prime p in the factorization of N(π). Thus suppose we have
p = πγ for some γ ∈ Z[ω]. By the multiplicativity of the norm, we have

N(p) = N(π)N(γ) = p2.

Thus either N(π) = p2 and N(γ) = 1 or N(π) = p, since π is by definition not a unit. In
the former case, γ is a unit and so π is associated to p. In the latter, suppose π = uq where
q is a rational prime and u is a unit. Then

p = N(π) = N(u)N(q) = N(q) = q2

which is clearly impossible, Thus π is not associated to a prime. �

Lemma 5.6. Suppose an element π in Z[ω] is such that N(π) = p is a rational prime. Then,
π is a prime in Z[ω]

Proof. Let’s prove this by Contradiction. Suppose that π is not a prime, then we know that
π is also not irreducible and hence π = δγ with N(δ), N(γ) > 1, Thus we obtain

p = N(π) = N(δ)N(γ)

which is impossible as we know that p is a rational prime and hence we obtain a contradiction
proving our theorem that is p is a prime. �

We now have the necessary information to classify the primes in Z[ω]

Theorem 5.7. Let p be a rational prime. If p ≡ 2 (mod 3), then p is a prime. If p ≡ 1
(mod 3), then p = ππ, where π is prime in Z[ω]. Hence, 3 = −ω2(1− ω)2, where 1− ω is a
prime in Z[ω].

Proof. Suppose that p ≡ 2 (mod 3), given that p is not a prime. Thus p = πγ where
N(π), N(γ) > 1. So p2 = N(π)N(γ), implying that N(π) = p. Now we write π = a + bω.
Then

p = N(π) = a2 − ab+ b2 Hence 4p = (2a− b)2 + 3b2

which implies that p ≡ (2a − b)2 (mod 3). This is impossible since 1 is the only quadratic
residue modulo 3, but we have p ≡ 2 (mod 3). Thus p is a prime. Now suppose that p ≡ 1
(mod 3). Thus by quadratic reciprocity we have(

−3

p

)
=

(
−1

p

)(
3

p

)
=
(p

3

)
(−1)

(p−1)(3−1)
2 (−1)

p−1
2 =

(p
3

)
=

(
1

3

)
= 1

So, there exist integers a and b such that pb = a2 + 3. Hence, p divides

(a+
√
−3)(a−

√
−3 = (1 + a+ 2ω)(1− 2− ω)
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If p was a prime in Z[ω],it would have to divide one of the factors. So, p would have to divide
either a+ 1 or a− 1, and, in particular,2. But this is impossible since p 6= 2 and hence 2

p
is

irreducible. Thus p = πγ. Hence,

p2 = N(π)N(γ) =⇒ p = N(π) = ππ

Notice that

x2 + x+ 1 = (x− ω)(x− ω2)

Taking norms we obtain N(1−ω)2 = 9, which is the same as 3 = N(1−ω), By the previous
lemma, 1− ω is prime. This completes the proof. �

We are now in a position to investigate the properties of the ring Z[ω] more thoroughly.
We split the elements of Z into the set of equivalence classes Z/pZ via the congruence relation
a ≡ b (mod p). We may similarly introduce a congruence relation on Z[ω] given by α ≡ β
(mod γ) which once again means γ | (α − β). This forms the ring Z[ω]/γZ[ω]. The first
natural question to ask is how many elements comprise this ring.

Theorem 5.8. Let π be a prime in Z[ω]. Then Z[ω]/πZ[ω] is a finite field with N(π)
elements.

Corollary 5.9. If π - α then αN(π)−1 ≡ 1 (mod π)

Proof. The previous theorem showed that Z[ω]/πZ[ω] is a finite field with N(π) elements, and
so every nonzero element has an inverse. Since Z[ω]/πZ[ω] has N(π) elements, it follows that
(Z[ω]/πZ[ω])∗ has N(π)− 1 elements. Now the result follows by Langrange’s Theorem. �

Lemma 5.10. Suppose that π is a prime such that N(π) 6= 3 and π - α. Then there exists

a unique m = 0, 1, 2 such that α
N(π)−1

3 ≡ ωm (mod π)

Proof. Corollary 4.11 shows that π | αN(π)−1 − 1. But we know that

αN(π)−1 − 1 = (α
N(π)−1

3 − 1)(α
N(π)−1

3 − ω)(α
N(π)−1

3 − ω2)

Since π is prime, it must divide one of the factors. In fact, it can only divide one of the
factors, since if it divided two it would have to divide their difference, which is impossible
as a consequence of the above discussion. �

Definition 5.11. Let π be a prime in Z[ω]. If N(π) 6= 3 then the cubic residue character of
α modulo π is given by (α

π

)
3

= 0 if π | α

(α
π

)
3

= ωm for m = 0, 1, 2 according to α
N(π)−1

3 ≡ ωm (mod π)ifp - α

The cubic residue character is entirely analogous in the theory of cubic residues to the
Legendre symbol in the theory of quadratic residues. Consequently, we have many similar
results.

Lemma 5.12. Let π be a prime in Z[ω]. Let α and β be elements of Z[ω], then
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1) α
N(π)−1

3 =
(α
π

)
3

(mod π)

2)

(
αβ

π

)
3

=
(α
π

)
3

(
β

π

)
3

3) if α ≡ β (mod π) then
(α
π

)
3

=

(
β

π

)
3

4)
(α
π

)
3

= 1 if and only if x3 ≡ α (mod π) has a solution in Z[ω]

Proof. (1) This follows immediately from the definition.
(2) (

αβ

π

)
3

≡ (αβ)
N(π)−1

3 ≡ (α)
N(π)−1

3 (β)
N(π)−1

3 ≡
(α
π

)
3

(
β

π

)
3

(mod π)

(
αβ

π

)
3

=
(α
π

)
3

(
β

π

)
3

(3) If α = β (mod π) Then,(
αβ

π

)
3

≡ (α)
N(π)−1

3 ≡ (β)
N(π)−1

3 ≡
(
β

π

)
3

(mod π) =⇒
(
αβ

π

)
3

=

(
β

π

)
3

�

Remark 5.13. Let a be an integer. When p ≡ 1 (mod 3), part (4) of Lemma 6.12 tells us
something interesting about the congruence x2 ≡ a (mod p). By Theorem 6.8 we know that
Z[ω]/pZ[ω] is isomorphic to Z[ω]/πZ[ω] Consequently p - a we see that

x3 ≡ a (mod p) is solvable in Z if and only if
(a
π

)
3

= 1

Before stating the Law of Cubic Reciprocity, we need the following definition:

Definition 5.14. A prime π in Z[ω] is said to be primary if π ≡ ±1 (mod 3)

One can quickly check that exactly two of the associates ±π,±ωπ,±ω2π are primary by
writing π = a+ bω and checking explicit cases.

Theorem 5.15 (Law of Cubic Reciprocity). . Let π1 and π2 be primary primes with
N(π1), N(π2) 6= 3 and N(π1) 6= N(π2), Then(

π1
π2

)
3

=

(
π2
π1

)
3

The proof is not beyond the scope of the paper, but requires the introduction of Gauss
and Jacobi sums, in addition to being very long. Now it’s a lot of definitions and lemma’s
and theorems and We now turn our attention to the main problem of this section.

Theorem 5.16. Let p be a prime. Then, p = x2 + 27y2 if and only if p ≡ 1 (mod 3) and 2
is a cubic residue modulo p.
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Proof. Suppose that p = x2 + 27y2. Then, p ≡ x2 ≡ 1 (mod 3). Now all it remains to show
that 2 is a cubic residue modulo p. Let π = x+ 3

√
−3y be an element of Z[ω] (Notice that√

−3 = 1 + 2ω). Then p = ππ which implies that p is a prime by theorem 6.7.

2 is a cubic residue modulo if and only if

(
2

π

)
3

= 1

We already know that 2 is a primary prime.

π = x+ 3
√
−3y = x+ 3(1 + 2ω)y = x+ 3y + 6ωy ≡ x ≡ ±1 (mod 3)

The last congruence holds because if x were divisible by 3, then p would also be divisible
by 3. We therefore have that π is primary. By cubic reciprocity, it suffices to show that(
2
π

)
3

= 1 (
2

π

)
3

≡ (π)
N(2)−1

3 ≡ π (mod 2)

So, we just need to prove that π ≡ 1 (mod 2). But

π = x+ 3y + 6ωy = x+ 3y = x+ y (mod 2)

since x and y have opposite parity (because x2 + 27y2 is odd), π ≡ 1 (mod 2)
Now suppose that p ≡ 1 (mod 3) and 2 is a cubic residue modulo p, by Theorem 6.8, we

can write p = 4ππ where π is an element of Z[ω]. Hence π = a + 3bω for some integers a
and b,

4p = 4ππ = 4(a2 − 3ab+ 9b2) = (2a− 3b)2 + 27b2

Therefore, all we need to do is verify that b is even, since then both sides of the above
equation are divisible by four. Since 2 is a cubic residue we have,(

2

π

)
3

= 1

By Cubic reciprocity we know that (π
2

)
3

= 1

But we know that (π
2

)
3
≡ π ≡ 1 (mod 2)

Hence, a + 3bω ≡ 1 (mod 2), implying that a is odd and b is even. This completes the
proof �

5.2. Biquadratic Reciprocity. Similarly to how we were able to use cubic reciprocity to
answer the question of when a prime p = x2 + 27y2, we will use biquadratic reciprocity to
show that p = x2 + 64y2 if and only if p ≡ 1 (mod 4) and 2 is a quadratic residue modulo
p. The development of biquadratic reciprocity is almost entirely analogous to that cubic
reciprocity. The main difference is that instead of considering the ring Z[ω] we consider the
ring Z[i] = {a+bi | a, b ∈ Z}. Notice that i is a fourth root of unity, playing the same role as
ω, which is a third root of unity. The ring Z[i] which is also commonly known as Gaussian
Integers is an Principal Ideal Domain and hence Unique factorization domain. In gaussian
Integers if α is an element of Z[i] then we define Norm of alpha by N(α) = αα = a2 + b2 and
N(α) = 1 if and only if α is a unit. Therefore the units of Z[i] are ±1,±i. The following
results are proved in an entirely similar fashion as the results of the previous section, and so
their proofs are omitted.
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Lemma 5.17. Let p be a prime in Z then,

• If p = 2 then we can write 2 = i3(1 + i)2 , where 1 + i is a prime in Z
• If p ≡ 1 (mod 4) then there is a prime π ∈ Z[i] such that p = ππ and primes π and
π are not associated in Z[i]

• If p ≡ 3 (mod 4) then p remains prime in Z[i]

Theorem 5.18. Let π be an irreducible in Z[i]. Then the ring Z[i]/πZ[i] is a finite field
with N(π) elements.

Corollary 5.19. if π - α then αN(π)−1 ≡ 1 (mod π)

Lemma 5.20. If π - α and N(π) 6= 2 then there exist unique integer m, 0 ≤ m ≤ 3 such
that

α
N(π)−1

4 ≡ im (mod π)

the above lemma allows us to make the following definition.

Definition 5.21. Let π be an irreducible with N(π) 6= 2. Then the biquadratic residue
character of α and π is given by

•
(
αβ
π

)
4

=
(
α
π

)
4

(
β
π

)
4

• If α ≡ β (mod π) then
(
α
π

)
4

=
(
β
π

)
4

•
(
α
π

)
4

= 1 if and only if x4 ≡ α (mod π) has a solution in Z[ω]

Before we state the Law of Biquadratic Reciprocity, we need the following definitions.

Definition 5.22. A non-unit α in Z[i] is called primary if and only if α ≡ 1 (mod (1 + i)3)

Theorem 5.23. (Law of Biquadratic Reciprocity). Let π and λ be relatively prime primary
elements of Z[i], then (π

λ

)
4

=

(
λ

π

)
4

(−1)
N(π)−1

4
N(λ)−1

4

The proof is not beyond the scope of the paper, but requires the introduction of Gauss
and Jacobi sums, in addition to being very long.

It is very interesting to notice how similar the statement of biquadratic reciprocity is to that
of quadratic reciprocity. The relationship between quadratic and biquadratic characters will
be used in proving the following theorem, which details the biquadratic character of 2. The
reader may also see how the theorem is proven using the supplementary laws of biquadratic
reciprocity, by looking at Section 4.B, of Cox [1].

Theorem 5.24. If π = a+ bi is a primary prime in Z[i] then(
2

π

)
4

= i
ab
2

The proof for this theorem is left for the reader to prove.

Theorem 5.25. Let p be a prime. Then, p = x2 + 64y2 if and only if p ≡ 1 (mod 4) and 2
is a cubic residue modulo p
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Proof. Let p ≡ 1 (mod 4) be a prime. By Lemma 6.16 there exists a primary prime π = a+bi
such that p = a2 + b2 = ππ. Notice that because π is primary, a is odd and b is even. We
know that Z[i]/pZ[i] is isomorphic to Z[i]/πZ[i]. Now Theorem 6.23 and definition 6.20 show
that (

2

π

)
= i

ab
2 = 1 if and only if x4 ≡ 2 (mod p) has a solution in Z

But this occurs if and only if b is divisible by 8, which immediately implies the result. �
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