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Abstract. In this paper, I hope to cover some interesting topics, theorems, etc. in Geomet-
ric Probability/Integral Geometry. We will begin by reviewing the famous Buffon’s needle
problem, then learn about Poincare’s Theorem/Formula, Cauchy’s Formula, Crofton’s For-
mula, kinematic density, and Santalo’s theorem. I shall assume knowledge of basic geometric
probability and a bit of integral geometry in this paper.

1. Buffon’s Needle

We will begin by recalling the famous Buffon’s Needle problem. This problem is a great
first look at geometric probability, because it employs the main principals of expected value.
First, let’s review the main lemma regarding linearity of expectation:

Lemma 1.1. Let X and Y be arbitrary variables, and let c ∈ R.
Then, we have that

• E(cX) = cE(X),
• E(X + Y ) = E(X) + E(Y ).

Buffon’s needle is centred around this notion of expected value in geometric probability.

Theorem 1.2. Suppose we have a floor made of parallel, equal-width pieces of wood. If we
drop a needle onto the floor, then what is the probability that the needle will hit the line
separating two different pieces?

Proof. The needle is of the same width as the space between planks. Therefore, the value of
X, where X is the number of lines the needle crosses, must either be 1 or 0. Take N needles.
The number of crossings depends on N , not on the arrangement (combined, straight or bent)
of the needles. Because of this, we may create a circle of circumference N and radius R = N

2π

out of these N needles!1 If we drop this circle, it will hit 4R lines (2R on the left, 2R on the
right). This means that the expected number of crossings is 4R = 2N

π
, which is the same as

N × E(X). Therefore, we have that

E(X) =
2

π
.

�

Remark 1.3. A trivial example of the problem is when we want to find an expected value
using two needles. Let X1 and X2 be the number of lines they cross. We have that

E(X1 +X2) = E(X1) + E(X2) = 2E(X).

This means that the expected number of crossings is 2E(X). Note that we get the same
thing when we glue X1 and X2 together (in any way, including straight and bent).

Date: August 16, 2020.
1Okay, not quite...but very close, which works fine.
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We can now state this result more formally.

Theorem 1.4. Suppose we have a floor made of slats with width w. We drop a needle of
length l on the floor. The probability P of the needle crossing a line is

P =
2l

πw
.

2. Poincaré’s Formula–Measuring lines which meet a curve

First, let’s get a bit of background information before looking at Poincaré’s Formula (note
that unless otherwise stated, we will be using definitions from [Tre08]).

Definition 2.1. Loosely speaking, a function is called smooth if it is continuous/differentiable
everywhere. If its domain has derivatives of different orders, we say the function is a C∞
function. We say a function is of class Ck if there exist derivatives f ′, f ′′, . . . , fk which are
continuous.

The next definition won’t really be used in our proof of Poincaré’s Formula, but it is good
to know and we shall use it later when looking at Poincaré’s Formula for intersecting curves.

Definition 2.2. The kinematic measure is a measure of a set of lines in (p, θ) coordinates
which is invariant under rigid motions. It is given by

dK = dp ∧ dθ,
where ∧ represents the wedge/exterior product.2

Let C be a piecewise C1 curve, and let L be some line in the plane. Denote the number of
intersection points as n(L ∩ C). If L agrees with a segment that is contained in C, then we
have that n(C ∩ L) =∞. If this is the case for C, we say that the set of lines where n =∞
has a dK-measure of 0. Now we can state and prove Poincaré’s Formula:

Theorem 2.3 (Poincaré’s Formula). Let C be a piecewise C1 curve. The measure of unori-
ented lines which meet C is

2L(C) =

∫
{L:L∩C 6=∅}

n(C ∩ L)dK(L).

Proof. Let C be a C1 differentiable curve Z(s) = (x(s), y(s)). Then there exist x(s), y(s) ∈
C1[0, s0], where the tangent vector3 Ż = (ẋ, ẏ) satisfies Ż = 1. We can now integrate this
type of curve using the above information.

Now let’s define a flag as the set of pairs (L,Z), where L is a line (determined by coordinate
pair (p, θ)) and Z is a point on L. A subset S of the flag is the set of lines and points on
these lines which touch C:

S = {(L,Z);L ∩ C 6= ∅, Z ∈ L ∩ C}.
The point Z is determined by an arclength coordinate q along the line from (p cos θ, p sin θ):∫

{L:L∩C 6=∅}
ndK =

∫
{L:L∩C 6=∅}

( ∑
Z∈L∩C

1

)
dK.

2For example, the wedge product u ∧ v is the square matrix u⊗ v − v ⊗ u.
3The vector tangent to the curve/surface at a given point.
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Note that the subset S is determined by the point (x, y) = Z, and L may be an unoriented
line through Z with angle 0 ≤ η < π. This means we can replace the coordinates (p, θ) with
(s, η), respectively for the two values. So, if (ẋ, ẏ) = (cosφ(s), sinφ(s)), we have

p̃ = x(s) cos η + y(s) sin η.

Now we just need to keep replacing things, and eventually we get the following equality upon
simplification:

dp̃dη = | cosφ(s)− η|ds dη.
Now, let’s simplify, and we’ll get what we want:∫

{L:L∩C 6=∅}

( ∑
Z∈L∩C

1

)
dK =

∫
{Z:Z∈C}

∫
{L:Z∈L}

dp̃ dη

=

∫ s0

0

∫ π

0

| cos(φ(s)− η)|dη ds

= 2

∫
C

ds

= 2L(C).

This completes the proof of Poincaré’s Formula for lines. [Tre08] �

There is another interesting formula of Poincaré, similar to the latter but for intersecting
curves. I encourage the reader to look at this in Treiburg’s slides.

3. Conditional probability and Sylvester’s Problem

Recall that a set Ω ∈ R2 is convex if the segment PQ is contained in Ω for all P,Q ∈ Ω.
Geometric formulas for integrals hold for convex sets. We have that n(L∩ ∂Ω) is either 0 or
2 for dK, so the equation

L(∂Ω) =

∫
{L:L∈Ω6=∅}

dK

represents the measure of unoriented lines which meet the convex set. Let’s now see a
probability definition before looking at the theorem.

Definition 3.1. The conditional probability of an event A given the event B is defined to
be

P (A|B) =
P (A ∩B)

P (B)
.

Now let’s see the theorem:

Theorem 3.2 (Sylvester’s Problem). Let Ω and ω ⊂ Ω be a bounded convex set in the plane.
Then the probability of a random line meeting ω given that it also hits Ω is

P =
L(∂ω)

L(∂Ω)
.

Here’s a corollary involving piecewise C1 curves and expected value, a great combination
of topics we’ve learnt so far:
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Corollary 3.3. Let C be a piecewise C1 curve contained in a compact convex set Ω. Of all
random lines that meet Ω, the expected number of intersections with C is

E(n) =
2L(C)

L(∂Ω)
.

Therefore, there exist lines that split C into at least 2L(C)
L(∂Ω)

points. [Tre08]

Proof. We know that Ω is convex, so we have that

E(n) =

∫
{L:L∩C 6=∅} n dK∫
{L:L∩Ω6=∅} dK

=
2L(C)

L(∂Ω)
.

The maximum of n exceeds the average. �

4. Cauchy’s Formula and the Support Function

Before we look at one of Cauchy’s formulas for integrals, we must first introduce the
support function and its properties.

Definition 4.1. The support function, denoted h(θ) where θ ∈ [0, 2π), is the largest p such
that L(p, θ) ∩ Ω 6= ∅. The width of h(θ) is

w(θ) = h(θ) + h(θ + π).

Now let’s see Cauchy’s Formula:

Theorem 4.2 (Cauchy’s Formula). Let Ω be a bounded convex domain. Then we have

L(∂Ω) =

∫ 2π

0

h(θ)dθ =

∫ π

0

w(θ)d(θ).

Proof. Simplify from L(∂Ω) as follows:

L(∂Ω) =

∫
{L:L∩Ω6=∅}

dK

=

∫ 2π

0

∫ h(θ)

0

dp dθ

=

∫ π

0

w(θ)d(θ).

�

This completes the proof of Cauchy’s Theorem.
Now let’s look at another theorem, which gives us the formula for the area of Ω in terms of
the support function:

Theorem 4.3. For a compact, convex domain Ω with a C2 boundary, the area is calculated
as

A(Ω) =
1

2

∫ 2π

0

h ds =
1

2

∫ 2π

0

h(h+ ḧ)dθ.



GEOMETRIC PROBABILITY AND INTEGRAL GEOMETRY 5

Proof. Let Z(θ) be the point L(h(θ), θ)∩ ∂Ω. We have that n(θ) = (cos θ, sin θ) is the outer

normal,4 and also that ṅ = (− sin θ, cos θ) and that Z = hn+ ḣṅ. This means that

Ż = ḣn+ hṅ+ ḧṅ− ḣn = (h+ ḧ)ṅ.5

Therefore, ds
dθ

= h+ ḧ, so

A(Ω) =

∫
Ω

dA

=
1

2

∫ 2π

0

h ds

=
1

2

∫ 2π

0

h(h+ ḧ)dθ.

This completes the proof of this theorem. [Tre08] �

5. More advanced Buffon’s Needle, finding π, Crofton’s Formula and
Corollary, and Bertrand’s Paradox

Now that we have acquired basic knowledge of some topics in geometric probability and
integral geometry, let’s see a more advanced and clever method to solving the same Buffon’s
Needle problem as discussed earlier.

Proof of Theorem 1. Let a needle N be of length l, a line segment centred at the origin.
Now, move the floor. Because l < d, this means the closest cracks to the origin are the only
ones that the needle could touch. Let C represent the circle about the origin with radius
d
2
. Let’s just focus on crack lines L where dist(L, 0) ≤ d

2
iff C ∩ L 6= ∅. This implies that

n(L ∩N) = 1. Therefore, the probability P of needle N touching the crack is

P =

∫
{L:L∩N 6=∅} n(L ∩N) dk(L)∫

{L:L∩C 6=∅} dK(L)
=

2L(N)

L(C)
=

2l

2π · d
2

=
2l

πd
.

This completes the proof. [Tre08] �

We can use the Buffon’s Needle Problem for a determination of π: if x is the number of
times the needles touches a crack in n tosses, we have

2l

d
≈ 2l

Pd
= π.

A fun fact about this is that mathematicians Wolf and Smith tossed 5000 and 3204 needles,
respectively, and found the values of π to be about 3.1596 and 3.1553, respectively.

Let us now turn to Crofton’s Formula, another theorem in integral geometry.

4A normal is a ray/vector perpendicular to some object. Furthermore, for a topological boundary (set of
points in the closure of set), an outer-pointing normal describes the direction of the normal points.

5The double dot is used to denote a second derivative with respect to time. So, ẍ = d2x
dt2 , where t represents

time.
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Theorem 5.1 (Crofton’s Formula). Let D ∈ R2 be a domain with compact closure. Let
L ∈ R2 be an arbitrary line, and let σ1(L ∩D) be the length. Then we have

πA(D) =

∫
{L:L∩D 6=∅}

σ1(L ∩D)dk(L).

For the sake of efficiency, we won’t give the proof here because it is quite long, but it
is similar to those we’ve seen previously, involving some trigonometry and of course, many
integrals.

Now let’s look at Crofton’s Corollary, which describes the probability of intersection of lines
in Ω:

Corollary 5.2 (Crofton). Let Ω be a bounded convex domain in the plane. The probability
that two arbitrary lines intersect in Ω, assuming they both meet Ω, is

P =
2πA(Ω)

L(∂Ω)2
.

Note that this probability satisfies P ≤ 1
2
, and equality holds iff Ω is a round disk.

Proof. Let L1(p1, θ1) and L2(p2, θ2) be arbitrary lines with invariant measure

dK1 ∧ dK2 = dp1 ∧ dθ1 ∧ dp2 ∧ dθ2.

Let Λ1 = L(p1, θ1) ∩ Ω be a subset. Then, we can compute the average number of times a
random line L(p2, θ2) meets Λ1 (assuming it meets Ω) as

E(n) =
2σ1(Ω ∩ L(p1, θ1))

L(∂Ω)
.

By Poincaré’s Formula and Crofton’s Formula, we have the probability that two lines meet:

P = E(n) =

∫
{L1:L1∩Ω6=∅}

∫
{L2:L2∩Ω6=∅} n(Λ1 ∩ L2)dK2dK1∫

{L1:L1∩Ω6=∅}

∫
{L2:L2∩Ω6=∅} dK2dK1

=

∫
{L1:L1∩Ω6=∅} E(n)dK1∫
{L1:L1∩Ω6=∅} dK1

=
2
∫
{L1:L1∩Ω6=∅} σ1(Ω ∩ L(p1, θ1))dK1

L(∂Ω)
∫
{L1:L1∩∂Ω6=∅} dK1

=
2πA(Ω)

L(∂Ω)2
.

This completes the proof of Crofton’s corollary. [Tre08] �

Next, we shall look briefly at Bertrand’s Paradox, a question about the average length of
a chord of Ω. The answers will vary, depending on the definition of a ”random line.”

Question 5.3 (Bertrand’s Paradox). What is the average length of a chord of a compact
convext set Ω?
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Here are some answers, where Ω is a disk of radius R:

• Uniform distance from origin and uniform angle: E(σ1) = πR
2

.

• Uniform point on boundary and uniform angle: E2(σ1) = 4R
π

.

• Two uniform random points on the boundary: E3(σ1) = 4R
π

.

6. Kinematic density and Poincaré’s Formula for intersecting curves

Let’s now look briefly at kinematic density:

Definition 6.1. Let C and Γ be two piecewise C1 curves in the plane. We can move Γ
around the plane with rigid motion:

Γ′ =Ma,b,φ(Γ),

where Ma,b,φ is the rotation by angle φ along with the translation by vector (a, b):

x′ = x cosφ− b sinφ+ a

y′ = x sinφ+ y cosφ+ b.

From this, we have that kinematic density is the invariant measure of motions of Γ′ given by

dK = da ∧ db ∧ dφ.

Using this, we can look at Poincaré’s Formula for intersecting curves:

Theorem 6.2 (Poincaré’s Formula for intersecting curves). Let C and Γ be piecewise C1

curves. Additionally, let n(C ∩ Γ′) denote the number of intersection points between C and
a moving Γ′. Then, we have∫

{Γ′:C∩Γ′ 6=∅}
n(C ∩ Γ′)dK(Γ′) = 4L(C)L(Γ).

The proof of this version of Poincaré’s Formula is very similar to the one for lines–we
introduce a flag subset, use some trigonometry, and finish using Fubini’s Theorem. The
reader may see Treiburgs’s paper for the full proof.

7. Santaló’s Formula

Finally, let’s look at Santaló’s formula, perhaps one of the most significant theorems
employing kinematic density:

Theorem 7.1 (Santaló’s Formula). Let Ω1 and Ω2 be convex plane domains. We assume
that Ω′2 is moving in the plane with kinematic density dK2. Then, we have∫

{Ω′
2:Ω′

2∩Ω1 6=∅}
dK2 = 2π{A(Ω1) + A(Ω2)}+ L(∂Ω1)L(∂Ω2).

[SS04]

Proof. Begin by first rotating the domain Ω′2 =MΩ2 by angle φ, then a translation of vector
(a, b). We have that the kinematic density is

dK = da ∧ db ∧ dφ.
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Now, let’s fix φ and let D(φ) be the set of moving centers (a, b) of Ω′2(φ) where the domains
overlap, as follows:

Ω1 ∩ Ω′2(φ) 6= ∅.

We have that

f(α) = h(α) + g(α + π − φ)

is the support function for D(φ), h(α) is the support function6 of A from the origin. for Ω1

and g(α) is the support function for Ω2.

Now we have a bunch of integrals:

J =

∫
{Ω′

2:Ω1∩Ω′
2 6=∅}

=

∫ 2π

0

∫
{Ω′

2(φ):Ω1∩Ω′
2(φ)6=∅}

da db dφ

=
1

2

∫ 2π

0

∫ 2π

0

f(α)[f(α) + f̈(α)] dα dφ

=
1

2

∫ 2π

0

∫ 2π

0

[h(α) + g(α + π − φ)]
[
h(α)+g(α+π−φ)

+ḧ(α)+g̈(α+π−φ)

]
dα dφ.

Now we use the fact that
∫ 2π

0
ḧ(α)dα = 0, combined with Cauchy’s formula, to get

2J =

∫ 2π

0

∫ 2π

0

h(α)[h(α) + ḧ(α)]dα dφ

+

∫ 2π

0

∫ 2π

0

g(α + π − φ)g(α + π − φ) + g̈(α + π − φ)dα dφ

+

∫ 2π

0

∫ 2π

0

h(α)[g(α + π − φ) + g̈(α + π − φ)]dφ dα

+

∫ 2π

0

∫ 2π

0

g(α + π − φ)[h(α) + ḧ(α)]dφ dα

= 4π A(Ω1) + 4π A(Ω2)

+

∫ 2π

0

h(α)[L(∂Ω2) + 0]dα +

∫ 2π

0

L(∂Ω2)[h(α) + ḧ(α)] dα

= 4π A(Ω1) + 4π A(Ω2) + L(∂Ω1)L(∂Ω2) + L(∂Ω2)[L(∂Ω1) + 0].

This completes the proof of Santaló’s Formula. [SS04] �

Let’s finish by seeing this corollary which combines Santaló’s Formula and Poincaré’s
Formula:

6Support function of a closed convex set A is the distance of supporting hyperplanes (i.e., hyperplane
where the set is contained in a closed half-space bounded by the hyperplane and has at least one boundary
point on the hyperplane).



GEOMETRIC PROBABILITY AND INTEGRAL GEOMETRY 9

Corollary 7.2. Let Ω1 and Ω2 be bounded convex planar domains. The expected number of
intersections of ∂Ω1 with a moving ∂Ω′2 (given that Ω′2 meets Ω1) is

E(n) =
4 L(∂Ω1)L(∂Ω2)

2π{A(Ω1) + A(Ω2)}+ L(∂Ω1)L(∂Ω2)
.

if Ω1
∼= Ω2, then E(n) ≥ 2 is equal iff Ω1 is a circle. [Tre08]

The proof of this corollary uses facts about piecewise curves and Poincaré’s and Santaló’s
formulae.
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