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1. Introduction

The object of this expository paper is to present a proof of Graham
and Pollak’s theorem. Some parts of the proof come from [1], while the
rest are my own (see Remark 3.4).

Graham and Pollak’s theorem finds the determinants of the distance
matrices of trees, that for a tree on n vertices, the determinant is
−(n − 1)(−2)n−2. It is simple and intriguing in that it shows the
determinant depending only on the size of a given tree, independent of
its structure or shape.

To discuss the theorem, let’s look at the definitions first.

Definition 1.1 (distance). The distance from one vertex to another is
the length of the shortest path between them.

Figure 1. The distance between X and Y is 3.

Definition 1.2 (distance matrix). For a graph G on n vertices, the
distance matrix, denoted D(G), of graph G is an n by n matrix whose
(i, j)-th entry is the distance between vertices vi and vj.

Naturally, the distance matrix is a symmetric matrix whose diagonal
consists entirely of zeros.
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Before directly approaching the problem, we need to know some ma-
trix properties that will be useful. The proof will be done by induction
on the number of vertices n. Assuming the (n − 1)-case, we want to
know how the determinant of an n×n matrix (n-vertex tree) is related
to those of (n− 1)× (n− 1) matrices ((n− 1)-vertex trees). Actually,
there is a method of expressing the determinant of a matrix by those
of smaller ones inside it: cofactor expansion.

2. Cofactor Expansion

Cofactor expansion is a way of calculating the determinant of an n×n
matrix M by taking the determinants of (n−1)×(n−1) matrices inside
M .

Example 2.1. n = 3:
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∣∣∣∣∣∣
To do the expansion, first pick out a row (or column) k, pick each

entry mk,j in row k, cross out the row and column it sits in, and calcu-

late (−1)k+jmk,j det(M j
k) (M j

k denotes the remaining (n− 1)× (n− 1)
matrix after crossing out row k and column j). Note that in the ex-
pression of det(M) as the sum of entry products, (−1)k+jmk,j det(M j

k)
is the sum of all products containing mk,j, where (−1)j+k denotes the
change in sign function of the corresponding permutation after adding
mk,j. So by summing up (−1)k+jmk,j det(M j

k) of all mk,j in row k, we
obtain det(M).
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Denote cof(M,k, j) = (−1)k+j det(M j
k). The formulas are

det(M) =
n∑

j=1

mk,j cof(M,k, j), det(M) =
n∑

i=1

mi,` cof(M, i, `)

From the expression, we know it is better to use the formula when there
are a lot of zeroes in a row or column.

3. The Proof

Theorem 3.1. (Graham and Pollak, 1971) The determinant of the
distance matrix D of a tree on n vertices is −(n− 1)(−2)n−2, or

det(D) = −(n− 1)(−2)n−2

Example 3.2. It’s a little hard to believe, so we will look at examples
with n = 4.

Figure 2. two trees and their respective distance matrices

The two trees have clearly different distance matrices, but the deter-
minant of both matrices is −12, that is −(4 − 1)(−2)4−2, as obtained
by the theorem.

Proof. The proof is by induction, so base cases are shown that the
theorem indeed works for a tree on 2 or 3 vertices. The 2-vertex tree
has determinant −1, as obtained by −(2− 1)(−2)2−2.

For a tree on 3 vertices, the distance matrix is D =


0 1 2

1 0 1

2 1 0


det(D) = 4 = −(3− 1)(−2)3−2.
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Denote the distance matrix determinant if the n-vertex tree an.
We now assume the theorem holds for trees on less than n ≥ 4 vertices.
It suffices to prove that an = −(n− 1)(−2)n−2.

Induction on n requires deleting some vertex from the tree to make it
smaller. We know that there are at least two special vertices – leaves on
a tree. More importantly, since a leaf has only one neighbor, deleting
it won’t change much of the graph: it is still a tree, and the distances
between remaining vertices stay the same.

Changing the labeling doesn’t change the determinant of the distance
matrix. So for convenience, label the two leaves v1 and vn, and label
vertices connected to them v2 and vn−1 respectively.

D =



0 d1,2 · · · d1,n−1 d1,n

d2,1 0 · · · d2,n−1 d2,n
...

...
...

...

dn−1,1 dn−1,2 · · · 0 dn−1,n

dn,1 dn,2 · · · dn,n−1 0


where di,j denotes the distance between vi and vj.

In order to use cofactor expansion, we want to do column (or row)
operations that don’t change the determinant while creating a lot of
zeroes in one column (or row). The leaves enable us to do just that.
Observe that for any 2 ≤ i ≤ n, di,1 = di,2+1, and for any 1 ≤ i ≤ n−1,
di,n = di,n−1 + 1. Denote the i-th column vector ci. We have

(c1 − c2)
T + (cn−1 − cn)T =

[
−1 1 · · · 1 1

]
+
[
−1 −1 · · · −1 1

]
=
[
−2 0 · · · 0 2

]
So we obtain det(D′)=det(D).

D′ =



−2 d1,2 · · · d1,n−1 d1,n

0 0 · · · d2,n−1 d2,n
...

...
...

...

0 dn−1,2 · · · 0 dn−1,n

2 dn,2 · · · dn,n−1 0


Cofactor expansion of the first column gives det(D) = det(D′) =
−2 det(D1

1)+2(−1)n+1 det(D1
n). Remind that D1

1 is the distance matrix
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of the (n−1)-vertex tree with leaf v1 removed, so det(D1
1)= an−1. Thus

an = det(D) = det(D′) = −2an−1 + 2(−1)n+1 det(D1
n)(3.3)

Remark 3.4. Yan and Yeh’s proof [1] of the theorem then relies on the
Desnanot-Jacobi identity

det(D) det
(
D1,n

1,n

)
= det

(
D1

1

)
det (Dn

n)− det (Dn
1 ) det

(
D1

n

)
in which det

(
D1,n

1,n

)
= an−2, det (D1

1) = det (Dn
n) = an−1 and det (Dn

1 ) =
det (D1

n). Substituting in (3.3) gives a quadratic equation in terms of
det (Dn

1 ). But the quadratic equation has two solutions and I do not
find it very obvious to eliminate one of them. The elimination is not in-
cluded in [1]. Thus I tried to fix the problem and found that det (Dn

1 )
can be directly calculated. I obtained the same recurrence sequence
(3.6) as in [2], with a probably shorter proof as the following.

Now we wish to obtain det(D1
n), which is the original matrix with

the n-th row and first column deleted. Note that the properties of
leaf v1 and its neighbor v2 still exist, namely, d1,i = d2,i + 1 for every
2 ≤ i ≤ n. Similarly dn,i = dn−1,i + 1, 1 ≤ i ≤ n− 1. Let ri denote the
i-th row vector of D1

n, and we have r1 − r2 = 1. Thus, first swapping
the first row to the last then adding r′n−1 to r′n, we obtain

det(D1
n)=

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1

0 d2,3 · · · d2,n−1 d2,n
...

...
...

...

dn−1,2 dn−1,3 · · · 0 dn−1,n

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−2

∣∣∣∣∣∣∣∣∣∣∣∣

0 d2,3 · · · d2,n−1 d2,n
...

...
...

...

dn−1,2 dn−1,3 · · · 0 dn−1,n

1 1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n−2

∣∣∣∣∣∣∣∣∣∣∣∣

0 d2,3 · · · d2,n−1 d2,n
...

...
...

...

dn−1,2 dn−1,3 · · · 0 dn−1,n

dn,2 dn,3 · · · dn,n−1 2

∣∣∣∣∣∣∣∣∣∣∣∣
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(3. 5) = (−1)n−2

∣∣∣∣∣∣∣∣∣∣∣∣

0 d2,3 · · · d2,n−1 d2,n
...

...
...

...

dn−1,2 dn−1,3 · · · 0 dn−1,n

dn,2 dn,3 · · · dn,n−1 0

∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)n−2 · 2

∣∣∣∣∣∣∣∣∣
0 d2,3 · · · d2,n−1
...

...
...

dn−1,2 dn−1,3 · · · 0

∣∣∣∣∣∣∣∣∣
Note that the two matrices in (3.5) are D1

1 and D1,n
1,n respectively, so

the determinants of both can be obtained by induction hypothesis.
Therefore,

det(D1
n) = (−1)n−2 det(D1

1) + (−1)n−2 · 2 det(D1,n
1,n)

= (−1)n−2an−1 + 2(−1)n−2an−2

Remind that an = −2an−1 + 2(−1)n+1 det(D1
n). (3.3)

Now we have the recurrence sequence

an = −2an−1 + 2(−1)n+1((−1)n−2an−1 + 2(−1)n−2an−2)

= −4an−1 − 4an−2(3.6)

By the induction hypothesis, we easily obtain an = −(n−1)(−2)n−2.
�

4. Questions and Remarks

Graham and Pollak’s theorem leads to further inquiries, namely:
1. How does the determinant relate to the tree geometrically? (if at

all)
2. Looking at the formula combinatorially, one might think that the

formula is counting the number of ways to pick an edge then decide
whether to include/exclude the rest of the edges. Is this the case?

3. Why doesn’t the structure matter?

The result of the theorem has profound implications. First, as a
direct connection to linear algebra, since the determinant is nonzero
for all trees on n ≥ 2 vertices, the distance matrices of all trees are
nonsingular.

Second, of the nn−2 trees on n vertices, every single one of their
distance matrices has the same determinant, while the result is not



DETERMINANTS OF DISTANCE MATRICES OF TREES 7

true for more general graphs. This suggests an underlying similarity
between all trees, which has persisted in many other results regarding
trees, and a great diversity of conjectures.
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