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1 Introduction

Take a set of points. Assuming that not all points are on the same line,
what can you say about the lines passing through said points? James Joseph
Sylvester posed a conjecture. He was probably inspired by a related problem in
algebraic geometry. This conjecture was perhaps the most famous problem on
the configuration of lines. Incidentally proving the conjecture also solved the
related algebraic geometry problem.

The conjecture was proved by Eberhard Melchior in 1941. Unaware of that
proof, Tibor Gallai proved the theorem again. The theorem is now named after
him: Sylvester - Gallai theorem.

In this paper, we will look at the Sylvester - Gallai theorem as well as a few
generalizations and related problems. One such related problem is the slope
problem posed by P.R Scott. In this problem we look at the number of slopes
formed by a set of points, where not all of the points are collinear.

2 Background

Let us begin by defining a few necessary concepts that we will be using in
these theorems. First, we need a definition of the number of slopes in our
configuration:

Definition 1. The number of slopes determined by a configuration of points
is the number of lines of different slopes determined by said configuration.

This means that when two lines are parallel, they only create one new slope.
Most theorems will not need any more definitions; however, we also will look at
a related theorem in graph theory and need to define a graph:

Definition 2. A graph is set of vertices V and a set E of pairs of elements
of V .

Finally, we will be looking at a few very specific types of graphs. We will
need to define a complete graph and a complete bipartite graph:

Definition 3. A complete graph is a graph where the set E contains all
possible pairs of elements of V .
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Definition 4. A complete bipartite graph is a graph such that the set V has
two subset A and B such that every element of A has an edge to every element
of B and vice versa.

We will also be assuming the metric axioms and order axioms.

3 Main Results

Let us begin by proving that there is at least one line passing through exactly
two points. This is, in fact, the Sylvester - Gallai theorem and will be a stepping
stone for the rest of the problems.

Theorem 1 (Sylvester - Gallai). Given any configuration of n points not
all on the same line, then there is at least one line with exactly two points.

Proof. We will construct the needed line and then proceed to prove that it
passes through exactly two points. The theorem is clearly true for three points.
Let B be the set of n > 3 points such that not all of them are on the same line,
and A be the set of lines passing through said points. Let C be the set of points
not in B. Let us choose a line a1 in A and some point B1 in B such that the
distance between a1 and B1 is the smallest out of any line and point pair. Let
C1 be the closest point to B1 on line a1. Note that C1 may be in C. Assume
toward a contradiction that the line a1 contains more than two points in B.
That would mean that there are two points on line a1, where the two points are
on the same side of C1. Let us call them B2 and B3 where the distance between
B2 and C1 is shorter than the distance between B3 and C1. Let the line a2 ∈ A
contain the points B1 and B3. Let C2 be the closest point to B2 on line a2.
Note that C2 may be in C. The distance between B2 and C2 must be shorter
than the distance between B1 and C1, which is a contradiction. QED

There are two logical next steps. The first is to generalize and see if this result
is true for more than just lines and can apply to general incidence geometries.
The other is to wonder if there are more lines passing through exactly two points.
We will look at both. Let us begin by looking at whether there are more lines
passing through exactly two points. Let us look at a few examples:
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We can see in these examples that there is a lot more than one line passing
through exactly two points. In fact, there are always at least n lines.

Theorem 2. Given any set P of n points, not all on the same line, then
there is at least n lines with exactly two points.

Proof. We will use a proof by induction.
Base case: It is true when n = 3.
Inductive step: Assume the theorem is true when n = x. Let L be the

set of lines passing through points in our configuration. By Theorem 1, for a
configuration with x+1 points there must be at least one line a passing through
exactly two points b and c. Take the sets A = P/{b} and B = P/{c}. As the
points in set P do not all lie on the same line, the points in A or the points in
B do not all lie on the same line. Therefore, by our inductive hypothesis there
are at least x+ 1 lines in L. QED

Now before we look at a generalization of the Sylvester - Gallai theorem, let
us take a quick detour and look at the slope problem. Instead of counting the
number of lines, let us look at the number of slopes a configuration of n points
contains. Let us again look at a few examples:

In these examples we can notice that there is always at least n− 1 slopes.
Theorem 3. Given a set P of n points not all on the same line, such that

n ≥ 3, then there are at least n− 1 slopes determined by P .
Proof. We will prove the theorem for an even number of vertices by set-

ting up a sequence of permutations of vertices and looking at the length of the
sequence. Looking back at our examples we notice that when there is an even
number of points in P , the configuration of points determines at least n slopes.
It suffices to prove this to prove the rest of the theorem. This is because for any
configuration of n = 2m + 1 points, we can find a subset of n − 1 points that
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already contains n−1 slopes, and when n = 3 the theorem is obvious. Let’s take
a configuration of 2m points with a slopes such that a > 2. Let us construct
a combinatorial model. Let us look at a one dimensional projection. Let the
direction of this one dimensional projection not be a slope in this configura-
tion. Let us number the points in the order they appear in a one dimensional
projection. Let us call this permutation π0 = 123...n. Let us change the orig-
inal direction by rotating it counter-clockwise. A rotation of 180◦ yields the
permutation: π0 → π1 → π2 → ...→ πa.

We can notice a lot about this sequence. First, a is the number of slopes
in the configuration. Second, πa = n...j...i...321. Third, for any i and j where
i < j, as the sequence progresses, i and j get swapped exactly once. Finally,
every move consists of one are more swaps.

Now all we must prove is that a > n. You may wonder why we decided to
look at the case when n is even. We did this so that now we can split each
permutation in half. Let us look at the move πi → πi+1. If this move affects
both sides, it is called a crossing move. This crossing move has order b if it
moves 2b letters from one side to the other side. Therefore, if each move has
order: b1, b2...bc, the amount of letters that switch sides is:

c∑
n=1

2bi > n− 1

We know that 2bi = n only if a = 1. Therefore, there must be at least two
crossing moves. If the move: πi → πi+1 does not affect both sides, it is called a
touching move or an ordinary move. A touching move is when the swap touches
the barrier between the two sides. All other moves are ordinary moves. We can
denote every move with a letter: C, T or O. We know that between any two C
moves there is a T move, and between a C move of order b and a T move there
are at least b− 1 O moves. Therefore, the sequence must also satisfy: between
a T move and a C move of order b there are at least b−1 O moves. We can now
complete the proof. By our rules if the direction rotates indefinitely, then the
the pattern must be: T,O,O...O,C,O,O..., O. The number of swaps must be
1 + (a− 1) + 1 + (a− 1). Taking a segment of length a, we get that the amount
of letters that switch sides is:

a+ 1 >

c∑
n=1

2bi > n− 1

Thus, a > n− 1. QED
Now we can generalize the Sylvester - Gallai theorem. The following theorem

was first proved by John Conway. The most beautiful proofs are the ones that
are one liners, then come the proofs that are almost one liners. This is one such
proof:

Theorem 4. Given a set S such that S has n > 3 elements, if A1, A2, A3

... Am be subsets of S such that for any two elements a, b ∈ S only one Ai

contains both a and b, then m ≥ n.
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Proof. We will use a combinatorial proof. Assume toward a contradiction
that m < n. For a ∈ S let xa be the number of sets Ai containing a. If there is
some j such that a 6∈ Aj then ax ≥ |Aj |. This is because the |Aj | sets containing
x and an element of Aj are distinct. By our assumptions |Aj |m < nax. Thus,
(n− |Aj |)m < n(m− ax). As x 6∈ Aj . Therefore:

1 =
∑
x∈S

1

n
=

∑
x∈S

∑
Aj :x 6∈Aj

1

(n(m− rx)
>

∑
Aj

∑
x:x 6Aj

1

(n− |Aj |)m
=

∑
Aj

1

m
= 1

which is a contradiction. QED.
There are many other proofs of Theorem 4, including one using linear al-

gebra. However, this is by far the most beautiful one. We have discussed the
Sylvester - Gallai theorem. We have looked at the related Slope Problem. We
even generalized the Sylvester - Gallai theorem. However, we are not done. We
must look at a related problem from graph theory. The proof is not as nice as
the previous one but still quite elegant. It contrasts with the previous theorem
as no combinatorial proof is known. Here it is:

Theorem 5: If a complete graph on n vertices is decomposed into complete
bipartite subgraphs H1, H2...Hn, then m ≥ n− 1.

Proof. To prove this theorem, we will set up a system of equations and
use the solutions of the system of equations that lead to a contradiction. Let
us call the complete graph K. Let us number the vertices 1 through n. Let
Tj and Bj be the defining sets of vertices of a subgraph Hj . Assume toward a
contradiction that m < n− 1. Take the equation:

n∑
k=1

xk = 0

and: ∑
k∈La

xk = 0

for all a. By our assumption this system of equations must have integer solu-
tions. Let us call the solution to this system of equations s1, s2, ..., s3. Every
vertex i has a corresponding variable vi. As H1, H2...H3 decompose K,∑

i<j

xixj =

m∑
k=1

(
∑
t∈Tk

vt ·
∑
b∈Bk

vb)
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Therefore, ∑
i<j

cicj = 0

Hence,

0 = (

n∑
k=1

ck)2 =

n∑
i=1

c2k + 2
∑
i<j

cicj =

n∑
i=1

c2k > 0

QED
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