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Abstract. The Littlewood-Offord problem deals with finding the small ball probability, defined
Pd(

∑n
i=1 ξivi ∈ B), for vectors vi ∈ V in Rd and i.i.d Bernoulli random variables ξi. This corre-

sponds to finding the concentration of the random linear combination, which can be interpreted
as a form of random walk, into a d-ball B of arbitrary radius. In this expository paper, we solve
this problem in full generalization using combinatorial and anlalytic methods. Furthermore, we also
discuss the faculty of Fourier analytic methods in proving various results pertaining to the problem,
and its versatility in dealing with restrictions on the set of vectors.

1. Random Walks

A stochastic or random process is defined as a collection of random variables {Xt}t∈T indexed
by a set T which is often a subset of R≥0 or Z≥0 and is usually interpreted as time. Stochastic
processes are central to the field of probability theory, further entailing a wide variety of applications
in the sciences by proving to be a suitable model to many natural phenomena. One particularly
interesting example of a stochastic process that has been extensively studied is the random walk.

Definition 1.1. A random walk is a series of successive random steps taken in some mathematical
space. Explicitly, for independent and identically distributed random variables Xk, a random walk

is the stochastic process {Sn}n∈Z≥0
with S0 = 0 such that Sk =

∑k
i=0Xk.

Example 1.1. The Drunkard’s Walk is a famous one-dimensional example of a random walk.
Consider a drunk man who is a distance d away from a cliff. If after each second he randomly
either takes one step towards the cliff with a probability p or away from the cliff with the remaining
probability, what are the chances of him falling off? After n steps, where is he likely to be?

Arising from the research of Littlewood and Offord on the distribution of real roots of random
polynomials, the eponymous problem analyses a specific kind of random walk.

Question 1.1. Given a random walk of length n in a d-dimensional Hilbert space Hd , characterized
as a linear combination X =

∑n
i=1 ξivi where ξi are independent, identically distributed (i.i.d)

random variables and vi are vectors such that‖vi‖ ≥ 1, what is the probability Pd(n,∆) = P(X ∈
B), where B is a d-dimensional ball of radius ∆? We refer to this as the small ball probability.

Intuitively, the Littlewood-Offord problem can be thought of as measuring the concentration of
a random walk of length n with step sizes greater than one into a ball of radius ∆. Littlewood
and Offord in [LO39] provided the first upper bound N2(n, 1) ≤ c · 2n√

n
log(n) in a circle of radius

one for complex vi, but through a rather involved approach. Note that N2(n, 1), the number of
linear combinations, leads to the probability simply by dividing by the 2n total possible linear
combinations. Erdos in [Erd45] was able to remove the log(n) term for real vi by a simple yet
ingenious combinatorial argument using Sperner’s Theorem. Before showing Erdos’s argument,
we first prove the result by Sperner, which places a bound on the size of antichains of the set
{1, 2, 3, . . . , n}.

Definition 1.2. A family F of subsets of the set N = {1, 2, . . . , n} is called an antichain if no
set of F contains another set in F .
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Example 1.2. The family of subsets F1 = {{1, 2}, {2, 3}, {3, 1}} of the set S = {1, 2, 3} is an
antichain of size 3. The family F2 = {{1}, {2, 3}} is another antichain of size 2.

Lemma 1 (Sperner’s Theorem). The antichains of an n-element set cannot be longer than
(

n
bn/2c

)
Proof. For proving this theorem, we count the antichains with respect to chains of the form ∅ =
C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cn = N , where |Ci| = i for 1 ≤ i ≤ n. We can construct such a chain
by appending one element to Ck to give us the Ck+1 subset. We have n choices for C1, then
(n− 1) choices for the second element in C2, and so on, giving a total of n! ways to make the chain
C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cn.
Next, let S be an element of the antichain F . We wish to determine how many chains of the form
above contain S of size k. Once again, we can start from ∅ and append elements one after the other
until we reach S, and then to complete the chain, we consider the remaining combinations from S
to N . The first step is equivalent to counting the permutations of the set S, and the second step
involves permuting the remaining elements; as a result, the total number of chains containing S
must be k!(n− k)!. Since F is an antichain, no chain can contain two elements S and T of F .
We divide the antichain F by the sizes of the subsets in it. Let mk denote the number of sets of
size k, then clearly we have |F | =

∑n
k=0mk. Now since each element of the antichain is contained

in a total of k!(n − k)! chains that do not contain any other element, the total number of chains
containing some element of F is given by

∑n
k=0mkk!(n − k)!, which naturally cannot exceed the

total number of chains n!. As a result, we get the inequality
n∑
k=0

mk ·
k!(n− k)!

n!
≤ 1, or equivalently,

n∑
k=0

mk ·
1(
n
k

) ≤ 1

Now replacing each
(
n
k

)
by the largest binomial coefficient

(
n
bn/2c

)
, we obtain 1

( n
bn/2c)

∑n
k=0mk ≤ 1

and from that the desired result

|F | =
n∑
k=0

mk ≤
(

n

bn/2c

)
�

Theorem 1 (Erdos 1945). Let v1, v2, . . . vn be real numbers such that |vi| ≥ 1. Then the number
of sums

∑n
i=1 ξivi that lie inside an arbitrary interval I of length 2 cannot be more than

(
n
bn/2c

)
.

Proof. Without loss of generality we can assume that vi ≥ 1, since for vi < 0, we can change vi to−vi
and ξi to −ξi to give the same product ξivi but for positive vi. Let S = {

∑n
i=1 ξivi :

∑n
i=1 ξivi ∈ I}

be the set of linear combinations contained within an interval I of length 2. We construct sets
S that are subsets of N = {1, 2, . . . , n} for each linear combination

∑n
i=1 ξivi as follows: k ∈ N

belongs to the set S if and only if ξk = 1.
We claim that the family F of sets S forms an antichain. Aiming for a contradiction suppose we
have for S1, S2 ∈ F that S1 ⊂ S2. But then if we take the difference of the linear combinations∑n

i=1 ξ
(1)
i vi and

∑n
i=1 ξ

(2)
i vi corresponding to S1 and S2 respectively, we get

n∑
i=1

ξ
(2)
i vi −

n∑
i=1

ξ
(1)
i vi = 2

∑
i∈S2 \ S1

vi ≥ 2

which raises a contradiction. Now since F is an antichain, by Sperner’s Theorem, its size is limited
by
(

n
bn/2c

)
. But by our construction, elements of the antichain lie in a one-to-one correspondence

with the linear combinations that are contained in I, and as a result the number of linear combi-
nations also cannot be more than

(
n
bn/2c

)
, proving the theorem. �

In fact, in the same paper, Erdos was able to extend his result to arbitrary radii with the following
theorem. We avoid the rather involved proof, but it can be found in [Erd45].



THE LITTLEWOOD-OFFORD PROBLEM 3

Theorem 2 (Erdos 1945). With the same notation as Theorem 2, the number of sums that lie
inside an arbitrary interval I of length 2r cannot be more than the sum of the r largest binomial
coefficients of n.

2. Asymptotics and Stirling’s Approximation

The
(

n
bn/2c

)
upper bound introduced by Erdos can be shown to be equivalent to the bound 2n√

n

by Stirling’s Formula, a powerful tool in asymptotics and analysis that approximates the factorial.
However, the derivation of this approximation is rather involved, and so we devote this section
to introducing the asymptotic notation that will be used throughout the paper and proving and
implementing Stirling’s Approximation.

Definition 2.1. We will be using the conventional Bachmann-Landau asymptotic notation to
denote various asymptotic scenarios for functions f(x) and g(x):

(1) Big O Notation: f(x) = O(g(x)) means that there exist C, x0 such that |f | ≤ Cg for all
x ≥ x0.

(2) Little o Notation: We say f(x) = o(g(x)) if limx→∞
f(x)
g(x) = 0.

(3) Finally, we say f(x) ∼ g(x) or f is asymptotic to g if limx→∞
f(x)
g(x) = 1.

Example 2.1. .

(1) The inequality in Theorem 1 N1(n, 1) ≤
(

n
bn/2c

)
can be written as a bound:

N1(n, 1) = O(
(

n
bn/2c

)
).

(2) For functions f(x) = x2 and g(x) = 2x, since limx→∞
x2

2x = 0, we can say that x2 = o(2x).

(3) We can say 2x is asymptotic to (2x + 2) since limx→∞
2x

2x+2 = 1

Theorem 3 (Stirling’s Approximation). The factorial of n has the following asymptotic form:

n! ∼
√

2πn ·
(
n

e

)n
and based on our asymptotic notation, another equivalent way of stating this theorem is

n! = (1 + o(1))
√

2πn
(n
e

)n
Example 2.2. We can use Stirling’s formula to interpret Theorem 1 as a small ball probability.
The total number of linear combinations within I is no more than

(1)

(
n

bn/2c

)
=

n!

(bn/2c!)2
∼

√
2πn · (ne )n[√

π · n · ( n2e)n/2
]2 =

√
2πn · (ne )n

πn · ( n2e)n
=

√
2

πn
· 2n

Thus, as a consequence of Stirling’s formula, for some constant c, we have N1(n, 1) ≤ c · 2n√
n

.

Dividing by the 2n linear combinations,

P1(n, 1) = O(n−1/2)

Stirling’s Approximation will prove to be essential in some proofs in the paper as it allows us to
establish a relationship between the combinatorial and analytic results. So as the final item in this
section, we now provide a proof for Stirling’s Formula. For proving the formula, we will manipulate
the extended definition of n! to obtain the desired result in the limiting case. The Dominated
Convergence Theorem from real analysis will enable us to use the limiting scenario on the integral.

Definition 2.2. The Gamma Function Γ(α) is an extension of the factorial function to R and C,
defined by the following convergent improper integral

(2) Γ(α+ 1) =

∫ ∞
0

xαe−xdx
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For n ∈ N, integrating Γ(n+ 1) by parts, we get the recurrence relation

Γ(n+ 1) =

∫ ∞
0

xne−xdx = −xne−x
∣∣∣∣∞
0

+ n

∫ ∞
0

xn−1e−x = 0 + nΓ(n)

We can calculate the initial value as Γ(1) =
∫∞
0 e−xdx = 1, and then it is easy to show by induction

that Γ(n+ 1) = n! for n ∈ N.

Proof. For the purpose of proving Stirling’s formula, we make the substitution x = n + t
√
n into

Γ(n+1). For this substitution we have dx = dt
√
n and upper and lower limits t =∞ and t = −

√
n

respectively.

Γ(n+ 1) =

∫ ∞
0

xne−xdx =
√
n ·
∫ ∞
−
√
n
(n+ t

√
n)ne−n−t

√
ndt =

√
n ·
(n
e

)n ∫ ∞
−
√
n

(
1 +

t√
n

)n
e−t
√
ndt

We claim that as n→∞,

(3)

∫ ∞
−
√
n

(
1 +

t√
n

)n
e−t
√
ndt −→

∫ ∞
∞

e−t
2/2dt,

where the RHS of (3) is the Gaussian integral, which will give us the missing
√

2π term and complete
our proof. However, note that the commutation of the limit and the integral is not necessary, and
in some cases can lead to a contradictory result. Consequently, we need to take a more rigorous
approach in proving that we can apply the limit inside the integral, for which we will require the
following theorem from real analysis.

Theorem 4 (Dominated Convergence Theorem). Suppose we have a sequence {fn(t)} of functions
that are integrable over R. Additionally, suppose we have that limn→∞ fn(t) = f(t) for an absolutely
integrable function f . Then if fn is dominated by an absolutely integrable function g i.e, fn(t) ≤ g(t)
for all n and t, then

lim
n→∞

∫ b

a
fn(t)dt =

∫ b

a
f(t)dt

A more rigorous and proper statement of this theorem in terms of Lebesgue integrals can be
found in Chapter 4 of [RF10] as the Lebesgue Dominated Convergence Theorem. To implement
this theorem, we first define the function

fn(t) :=

0 if x ≤ −
√
n(

1 + t√
n

)n
e−t
√
n if x ≥ −

√
n

and f(t) = e−t
2/2

Limit of the sequence fn: First, we need to prove that limn→∞ fn(t) = f(t). Taking the natural

logarithm of fn(t), we obtain ln(fn) = n ln
(

1 + t√
n

)
− t
√
n. Next, considering the limit, we see

that

lim
n→∞

n ln
(

1+
t√
n

)
−t
√
n = lim

n→∞

(
n
[ t√

n
− t

2

2n
+O
( t3

n
√
n

)]
−t
√
n

)
= lim

n→∞

(
− t

2

2
+O(t3/n

√
n)
)

= −t2/2

from which we can get the desired result by exponentiating.
Domination by a function g: To satisfy the second criterion for the dominated convergence
theorem, we consider the following integrable function g(t) ≥ 0:

g(t) :=

{
e−t

2/2 if t < 0

(1 + t)e−t if t ≥ 0

To prove that g(t) ≥ fn(t) for all n and t, we consider the following set of cases:
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(1) t ≤ −
√
n: This case follows directly from our definition of fn(t) and g(t), since fn(t) = 0

over this interval.
(2) −

√
n ≤ t ≤ 0: Because the natural logarithm is a monotone increasing function, ln(x1) ≥

ln(x2) if and only if x1 ≥ x2. Taking the logarithm of functions fn and g,

dn = ln(fn)− ln(g) = n ln
(

1 +
t√
n

)
− t
√
n+

t2

2

It suffices to show that dn ≤ 0 in the given interval. Clearly, dn(0) = 0. Consequently, our
approach will be to show that dn is increasing on the interval −

√
n ≤ t ≤ 0, since that

implies that dn takes negative values over it. Taking the derivative,

d′n(t) =

√
n

1 + t/
√
n

+ t−
√
n =

t2

t+
√
n
> 0 for −

√
n < t < 0

Now since ln(fn)− ln(g) ≤ 0, the desired result follows.
(3) t ≥ 0: We take a similar approach over this interval and consider the difference of logarithms

dn(t) = n ln
(

1 +
t√
n

)
− t
√
n− ln(t+ 1) + t

In this case, we have dn(0) = 0, and so it is sufficient to show that dn(t) is decreasing over
the interval (0,∞) to prove that fn(t) ≤ g(t). Differentiating both sides,

d′n(t) =

√
n

1 + t/
√
n

+ (1−
√
n)− 1

t+ 1
=

(1−
√
n)t2

(t+ 1)(t+
√
n)

< 0 for t > 0, n > 1

In the case that we have n = 1, we have f1 − g = 0, and so in general fn(t) ≤ g holds true
for all n and t.

The conditions limn→∞fn(t) = f(t) and that fn(t) ≤ g(t) for all n allow us to apply the dominated
convergence theorem. In particular, that gives us

(4) lim
n→∞

Γ(n+ 1)√
n(ne )n

= lim
n→∞

∫ ∞
0

(1 +
t√
n

)ne−t
√
ndt =

∫ ∞
−∞

e−t
2/2dt

The last integral I =
∫∞
∞ e−t

2/2dt = 2
∫∞
0 e−t

2/2dt is the Gaussian integral, a well-known integral
in probability and statistics that bears many applications. The evaluation of this integral, which
we perform in terms of variables x and y for practical reasons, relies on its property that

I2 =

(
2

∫ ∞
0

e−x
2/2dx

)2

= 4

∫ ∞
0

e−x
2/2dx

∫ ∞
0

e−y
2/2dy = 4

∫ ∞
0

e−
1
2
(x2+y2)dydx

Now we can convert to polar coordinates by the substitution x2 + y2 = r2 and dxdy = rdrdθ,
yielding

I2 = 4

∫ π/2

0

∫ ∞
0

re−1/2r
2
drdθ = 4

∫ π/2

0
−e−1/2r2

∣∣∣∣∞
0

dθ = 4

∫ π/2

0
1dθ = 4 · π/2 = 2π

giving I =
√

2π since e−x
2/2 > 0 for all x. In combination with (4), we get

(5) lim
n→∞

Γ(n+ 1)√
n(ne )n

=
√

2π, or lim
n→∞

n!√
2πn(ne )n

= 1

which corresponds the desired asymptotic n! ∼
√

2πn(ne )n, and finally finishes our proof of Stirling’s
approximation. �

An interesting feature of this proof is the choice of substitution made. Setting x = n + t
√
n

may seem arbitrary, rewriting it as t = x−n√
n

motivates the probability theoretic reasoning behind

this choice of substitution. For a sequence of random variables Xn with mean n and variance
√
n,

the central limit theorem states that Z = Xn−n√
n

becomes similar in distribution to the standard
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normal distribution in the asymptotic case. This approach leads to a rather short proof of Stirling’s
Approximation as shown in [Kha74] and [Won77] , although both of these methods use advanced
concepts in probability. This proof, derived from [Con16], circumvents these probability theoretic
aspects as we make the substitution x = n+ t

√
n.

3. Generalizations of the Littlewood-Offord Problem

In his 1945 paper [Erd45] where he improved the small ball probability bound to 1/
√
n for

real numbers, Erdos conjectured that his result could be extended to complex numbers and even
to arbitrary unit balls in Hilbert Spaces Hd of any dimension. Klietman and Katona in [Kle65]
and [Kat66] respectively managed to prove the complex number case; but their approach was
difficult to extend to higher dimensions. It was due to an innovative method by Klietman in [Kle70]
that Erdos conjecture was finally proved in full generalization.

Theorem 5 (Klietman 1970). Let X represent the linear combination
∑n

i=1 ξivi for i.i.d Bernoulli
random variables ηi and vectors vi ∈ Hd such that ‖vi‖ ≥ 1. Additionally, consider the region⋃k
i=1Ri such that Ri ∈ Hd and |x−y| < 2 for all x,y ∈ Ri. Then the number of linear combinations

in this region is no more than the sum of the k largest binomial coefficients of n.

Proof. Klietman’s proof hinges on the recursion of binomial coefficients via Pascal’s formula, which
gives the relation

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)
. We set r = bn−k+1

2 c and s = bn+k−12 c so that
(
n
r

)
,
(
n
r+1

)
, . . .

(
n
s

)
represent the k largest binomial coefficients of n. Using the aforementioned recursion,

s∑
i=r

(
n

i

)
=

s∑
i=r

(
n− 1

i

)
+

s∑
i=r

(
n− 1

i− 1

)
Replacing i by i+ 1, we get

=
s∑
i=r

(
n− 1

i

)
+

s−1∑
i=r−1

(
n− 1

i

)
=

s∑
i=r−1

(
n− 1

i

)
+

(
n− 1

r

)
+

s−1∑
i=r−1

(
n− 1

i

)

(6) and so
s∑
i=r

(
n

i

)
=

s∑
i=r−1

(
n− 1

i

)
+

s−1∑
i=r

(
n− 1

i

)
This last relation suggests implementing an inductive step for solving the problem since the sum of
the i largest binomial coefficients of n is the same as the sum of the (k + 1) and (k − 1) binomial
coefficients of (n− 1).
Without any loss of generality, we can assume that Ri are disjoint regions. The base case n = 1 is
trivial. Suppose the theorem holds true for n− 1, i.e the number of linear combinations

∑n−1
i=1 ξivi

lying in the union of k regions is given by the sum of the k largest binomial coefficients of (n− 1).
Keeping in mind (6), our approach will be to show that linear combinations of v1,v2, . . . ,vn that
lie in k disjoint regions exhibit a one-to-one correspondence with the linear combinations lying in
(k + 1) or (k − 1) regions.

We know that
∑n−1

i=1 ξivi ∈ Ri for some i. Then we can translate the region by ±vi, based on the
value of ξn, to assert that

∑n
i=1 ξivi ∈ Ri ± vn. To establish a one-to-one correspondence, we first

consider the following lemma:

Lemma 2. Upon translating regions R1, R2, . . . Rk by −vn, at least one of these regions Rj −vn is
disjoint from the same regions under translation by vi, that is the regions R1+vn, R2+vn, . . . Rk+vn

Postponing the proof of this lemma to the end, note that as a consequence we can bijectively
map linear combinations

∑n
i=1 ξivi into one of two classes as desired.

Class 1: Into Class 1 we add linear combinations
∑n

i=1 ξivi with ξn = −1, as well as linear
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combinations
∑n

i=1 ξivi with ξn = 1 that lie in the region Rj . For the first set of linear combi-

nations, since
∑n

i=1 ξivi =
∑n−1

i=1 ξivi − vn ∈ Ri for some 1 ≤ i ≤ k by assumption, it follows

by translation that
∑n−1

i=1 ξivi ∈ (Ri + vn) for some i. For the second set of linear combinations

in this class, we will have
∑n−1

i=1 ξivi + vn ∈ Rj , or
∑n−1

i=1 xiivi ∈ Rj − vn. Consequently, the

linear combinations
∑n−1

i=1 ξivi associated with elements in class 1 lie in (k + 1) disjoint regions
R1 + vn, R2 + vn, . . . , Rn + vn and Rj − vn.

Class 2: Into the second class we admit the remaining linear combinations
∑n

i=1 ξivi with ξn = 1

that are not in Rj . Since
∑n−1

i=1 ξivi + vn ∈ Ri for some i 6= j, it follows that
∑n−1

i=1 ξivi ∈ Ri − vn,

and so combinations
∑n−1

i=1 ξivi associated with elements of class 2 lie in (k − 1) disjoint regions
R1 − vn, . . . , Rk − vn excluding Rj − vn.

Total
∑n

i=1 ξivi

Class 1 Class 2

∑n
i=1 ξivi with ξi = −1

∑n
i=1 ξivi ∈ Rj with ξi = 1

∑n
i=1 ξivi /∈ Rj with ξi = 1

(k + 1) disjoint regions (k − 1) disjoint regions

Thus, we have managed to set up a one-to-one correspondence that associates with every linear
combination of the form

∑n
i=1 ξivi a linear combination either in class 1 lying in the union of (k+1)

regions, or in class 2, lying in the union of (k − 1) regions. Representing N (S) as the number of
elements, we have

(7) N
( n∑
i=1

ξivi ∈
⋃
Ri

)
= N (Class 1) +N (Class 2)

However, by our induction hypothesis, the number of linear combinations
∑n−1

i=1 ξivi corresponding

to elements of class 2 lying in (k + 1) regions can be at most
∑s

i=r−1
(
n−1
i

)
. Similarly, the number

of the linear combinations
∑n−1

i=1 ξivi corresponding to elements of class 1 lying in (k − 1) regions

can be at most
∑s−1

i=r

(
n−1
i

)
. Finally, due to the bijectivity of correspondence in both classes, it

thus follows from (6) and (7) that

N
( n∑
i=1

ξivi ∈
⋃
Ri

)
≤

s∑
i=r−1

(
n− 1

i

)
+

s−1∑
i=r

(
n− 1

i

)
=

s∑
i=r

(
n

i

)
which is the desired result. �

Proof of Lemma 2. The final step in our proof is to prove Lemma 2, which comes as an application of
the Cauchy-Schwartz inequality. Consider the hyperplane H = {x : 〈vn,x〉 = c} that is orthogonal
to vn, where 〈·, ·〉 represents the inner product of vectors. Consider H to also contain all translated
regions Ri + vn in the region defined as 〈vn,x〉 ≥ c and touches some region Rj + vn, which is
possible due to the boundedness of our regions. We wish to show that Rj − vn lies on the other
side of H.
Aiming for a contradiction, suppose for some x ∈ Rj that 〈vn,x − vn〉 ≥ c, or equivalently,

〈vn,x〉 ≥‖vn‖2 + c. Next let y + vn be the point where the hyperplane H and the region Rj + vn
touch. Then y ∈ Rj and satisfies 〈vn,y + vn〉 = c. This can also be expressed as 〈vn,y + vn〉 =
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〈vn,y〉+〈vn,vn〉 = c, or 〈vn,−y〉 =
∥∥v2

n

∥∥−c. Combining this equation with the inequality obtained
for x, we get

〈vn,x− y〉 ≥ 2‖vn‖2

and then by the Cauchy-Schwartz inequality, which states that 〈a,b〉 ≤‖a‖ ·‖b‖, we see that

2‖vn‖2 ≤ 〈vn,x− y〉 ≤‖vn‖ ·‖x− y‖ , or ‖x− y‖ ≥ 2

However, this raises a contradiction, since because x,y were in the closure of Rj , it must hold that
‖x− y‖ ≤ 2, and so our lemma is proved. �

The small ball probability is obtained when k = 1. The largest binomial coefficient is
(

n
bn/2c

)
,

which proves Erdos conjecture that the small ball probability generalizes to arbitrary dimension d,
i.e, Pd(n, 1) = O

(
1√
n

)
. Another interesting feature to note is that the bound is exact since equality

is achieved if we consider vectors

v1 = · · · = vn = v = (1, 0, 0, . . . , 0)T

For even n,
(
n
n/2

)
total linear combinations sum to 0,

(
n

n/2+1

)
sum to −2v,

(
n

n/2−1
)

sum to 2v, and

so on. If we have a ball of radius 1 containing vectors

−2

⌊
k − 1

2

⌋
, . . .− 2v,0, 2v, . . . 2

⌊
k − 1

2

⌋
then the sum of the total number of linear combinations that sum to these vectors is naturally
given by the k largest binomial coefficients, namely(

n

r

)
, . . . ,

(
n

n/2− 1

)
,

(
n

n/2

)
,

(
n

n/2 + 1

)
, . . . ,

(
n

s

)
with a very similar result holding for odd numbers as well.

Following Klietman’s comprehensive derivation of small ball probabilities for the unit d-ball, the
next natural step was to tackle the problem for an arbitrary radius ∆. However, under this sce-
nario the problem saw a substantial increase in difficulty. After the relatively strong inequality
Pd(n,∆) ≤ 2dd∆

√
de ·O( 1√

n
) due to [Gri80] and [Sal83], an extremely significant breakthrough was

realized by Frankl and Füredi in [FF88], giving a much better bound.

Theorem 6 (Frankl, Füredi 1988). The small ball probability for dimension d can be expressed as

Pd(n,∆) ≤ (1 + o(1))2−nS(n, s)

where S(n, k) is the sum of the k largest binomial coefficients and s := b∆c+ 1.

With Frankl and Füredi’s result, a natural question to ask is whether we can remove the o(1)
term. Unfortunately, the result does not always hold true, as one can construct a counter-example
for s ≥ 2 and ∆ >

√
(s− 1)2 + 1 as follows:

Example 3.1. Suppose we have vectors v1 = v2 = · · · = vn−1 = e1 and vn = e2 for orthogonal

unit vectors e1 and e2. We consider a ball B of radius ∆ >
√

(s− 1)2 + 1 centered at v =
(v1 + v2 + · · · + vn)/2. We assume that n and s have the same parity. Now suppose we choose
n−s
2 + k for k > 0 of the (n − 1) total ξi coefficients of e1 to be negative, and the rest positive.

Then we get
n∑
i=1

ξivi = −
(n− s

2
+ k
)
e1 +

(
n− 1− n− s

2
− k
)
e1 + ξne2 = (s− 1− 2k)e1 + ξne2

Consequently, we see that the vector obtained by this linear combination is within the ball centered

at v = (n−1)e1+e2
2 as long as 0 ≤ k ≤ s, which means that we can choose between n−s

2 and n+s
2 of
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the (n− 1) total ξi to be negative to obtain a vector that is still within B. So then the probability
of a linear combination being inside B becomes

Pd(n,∆v) = 2
∑

n−s
2
≤i≤n+s

2

(
n− 1

i

)/
2n > 2−nS(n, s)

Keeping in mind this counter-example, [FF88] conjectured that Klietman’s result could be gen-
eralized for sufficiently large n and appropriately chosen ∆.

Conjecture 1. For n ≥ n0(d,∆), if s− 1 ≤ ∆ ≤
√

(s− 1)2 + 1, then

Pd(n,∆) ≤ 2−nS(n, s)

We can show that the condition holds when ∆ ∈ (n,
√
n2 + 1] for n ∈ N; this implies that

the interval over which this theorem becomes smaller for large values of n since n ∼
√
n2 + 1.

Consequently, while the conjecture provides a better bound on Pd(n,∆), it is more restrictive in
nature and fails to work in a general setting in comparison to Theorem 6. The conjecture remained
unsolved until Tao and Vu in [TV12] managed to provide a short proof for the conjecture in full
generality using the following theorem, stated below along with its contrapositive.

Theorem 7 (Tao, Vu 2012). Let V = {v1,v2, . . . ,vn} denote a multiset of vectors in Rd and let
XV represent linear combinations

∑n
i=1 ξivi. Additionally, let V have the property that for any

hyperplane H, dist(H,vi) ≥ 1 for atleast k of the total n vectors vi. Then for any unit ball B,

Pd(XV ∈ B) = O(k−d/2)

Theorem 8 (Contrapositive). Suppose we have Pd(XV ∈ B) = Ω(k−d/2) for a unit ball B. Then
there must exist a hyperplane H such that dist(H,vi) ≥ 1 for atleast k of the total n vectors vi.

The proof for Theorem 8 and its contrapositive are deeply involved in advanced Fourier analytic
techniques, and so we refrain from providing them here. See [TV12] and [NV13] for a rigorous
treatment of these theorems. Now, with this powerful theorem, we can now prove both Theorem 7
and Conjecture 1.

Proof of Theorem 7. Aiming for a contradiction, suppose we have for arbitrarily large n and
some ∆ > 0 that for a ball of radius ∆,

(8) Pd(XV ∈ B) ≥ (1 + ε)2−nS(n, s)

Next, we apply Stirling’s approximation to S(n, s). We assume n and s are even since these will not
affect our final result, which is rather weak but sufficient. For the largest binomial coefficient, we
have

(
n
bn/2c

)
= O(1/

√
n), and since the number of largest binomial coefficients s is taken independent

of the arbitrarily large n, we have

s/2∑
k=−s/2

(
n

n/2 + k

)
2−n =

s/2∑
k=−s/2

n!

(n/2 + k)!(n/2− k)!
2−n >

n!

((n/2)!)2
· 2−n ∼ 1√

n

and as a result we can conclude that

Pd(XV ∈ B) > 1/
√
n

Now we can apply the pigeonhole principle to assert that inside our ball B, we can find a smaller
ball B0 of radius 1/ log(n) such that

Pd(XV ∈ B0) >
1

n1/2 logd n

since each ball B0 would have volume proportional to (1/ log(n))d. Now we wish to express this in

the form of Theorem 8 as Ck−d/2 for some constant C and appropriately defined k. So then our
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task reduces to finding appropriate k such that n−1/2 log−d(n) dominates k−d/2 in the asymptotic
scenario. Looking at the quotient of functions, we get

(9)
n−1/2 log−d(n)

k−d/2
=

(
n
−1
2d · 1

log(n)

k−1/2

)d
=

√
k · n−1/2d

log(n)

Now since na dominates log(n) for all a > 0, we define k := na such that we get a positive exponent
of n in the numerator that can dominated the log(n). From (9) we must have a

2 −
1
2d > 0, and since

d ≥ 2, the smallest fractional value of a for which the inequality holds true is a = 2/3. So then by

defining k := n2/3, the desired asymptotic result for large n is obtained.

Pd(XV ∈ B0) = Ω(k−d/2)

Then by applying a scaled version of Theorem 9 to account for the 1/ log(n) radius of B0, we
confirm the existence of a hyperplane H such that dist(H,vi) ≤ 1 for atleast n− k vectors vi. By
conditioning on the sign of ξi for the remaining k vectors and projecting the sum XV onto the
hyperplane H by a map ψ, we can conclude based on (8) that there must exist a d− 1 dimensional
ball B′ for which

Pd−1(Xψ(V ) ∈ B′) ≥ (1 + ε)2−nS(n, s)

But each of the orthogonally projected set of vectors ψ(V ) must have magnitude atleast 1− 1
log(n) .

But for sufficiently large n, this contradicts the induction hypothesis: we first rescale ψ(vi) by
1

1−1/ log(n) to make the magnitude of our vectors atleast one. Next, notice that we can identify H
with Rd−1; however, under these circumstances we can apply a scaled variant of Theorem 6. for
dimension d− 1, immediately giving a contradiction. �

Proof of Conjecture 1. We only need to prove for s > 2, since the lower case matches Theorem
5. Aiming for a contradiction, suppose we have for arbitrarily large n and some ∆ > 0 that for a
ball of radius ∆,

(10) Pd(XV ∈ B) ≥ 2−nS(n, s)

We can iterate the process outlined in the proof of Theorem 6. to construct a descent ar-
gument, which allows us to obtain a one-dimensional subspace L of the original Rd for which
now atleast n − O(k) of the vectors have dist(L,vi) < 1/ log(n). By rearranging, we can have
dist(L,vi) < 1/ log(n) for the first n− k1 vectors vi, where k1 := O(k).
Now we consider the orthogonal projection ϕ : Rd → L and divide it into two distinct cases:

1. In the case that |ϕ(vi)| > ∆/s for all i, we first use the bound

(11) Pd(XV ∈ B) ≤ P1(Xϕ(V ) ∈ ϕ(B)),

which stems from the fact that increasing the dimensionality of the small ball probability leads to
a decrease in the probability. Now on the left-hand side we can use Theorem 3 after rescaling by
s/∆ to match the |vi| ≥ 1 criterion. This gives

(12) P1(Xϕ(V ) ∈ ϕ(B)) ≤ 2−nS(n, s)

but combining this with the inequality above clearly contradicts our assumption that Pd(XV ∈
B) ≥ 2−nS(n, s).

2. The case in which |ϕ(vi)| ≤ ∆/s is a little more involved. We look at the smaller multi-
set of vectors Vn−k = {v1,v2, . . .vn−k}, for which we consider Pd(XVn−k + ξnvn ∈ B0) for an
arbitrary unit ball B0. Since for this set of linear combinations we can freely condition the remnant
i.i.d Bernoulli variables ξj where (n− k+ 1) ≤ j ≤ (n− 1), we must have the existence of a ball B0
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for which the small ball probability is greater for Pd(XVn−k + ξn) with B0 than that for the original
XV with B. That is,

(13) Pd(XVn−k + ξnvn ∈ B0) ≥ Pd(XV ∈ B)

Now let c(B0) be the center of the ball B0. Then if we were to have XVn−k + ξnvn ∈ B0, for any
ξn, or equivalently XVn−k ∈ B0 − ξnvn, it follows that after the orthogonal projection to the line,

(14) |Xϕ(Vn−k) − π(c(B0))| ≤ radius B +‖ξnvn‖ ≤ ∆ +
∆

s

Now suppose we also have |Xϕ(Vn−k)−ϕ(c(B0))| >
√

∆2 − 1, then in this case only one of X(Vn−k)+
vn and X(Vn−k)− vn can be in B0. For a more detailed explanation of this using the parallelogram

law, see [TV12]. So then under the condition that |Xϕ(Vn−k) − ϕ(c(B0))| >
√

∆2 − 1, we see that
the probability is reduced by a factor of 1/2. So then we get, the total probability as

Pd(XVn−k + ξnvn ∈ B0)

(15) ≤ Pd

(
|Xϕ(Vn−k)−ϕ(c(B0))| ≤

√
∆2 − 1

)
+

1

2
Pd

(√
∆2 − 1 < |Xϕ(Vn−k)−ϕ(c(B0))| ≤ ∆+

∆

s

)
(16) ≤ 1

2

[
Pd

(
|Xϕ(Vn−k) − ϕ(c(B0))| ≤

√
∆2 − 1

)
+ Pd

(
|Xϕ(Vn−k) − ϕ(c(B0))| ≤ ∆ +

∆

s

)]
Now suppose ∆ in fact satisfies the required chain of inequalities

(17)
√

∆2 − 1 < s− 1 ≤ ∆ < ∆ +
∆

s
< s

Then by scaling Theorem 2 by a factor of |ϕ(vi)|, we can conclude that
(18)

Pd

(
|Xϕ(Vn−k)−ϕ(c(B0))| ≤

√
∆2 − 1

)
≤ Pd

(
|Xϕ(Vn−k)−ϕ(c(B0))| ≤ s−1

)
≤ 2−(n−k)S(n−k, s−1)

and for the other half that

(19) Pd

(
|Xϕ(Vn−k)−ϕ(c(B0))| ≤ ∆ +

∆

s

)
≤ Pd

(
|Xϕ(Vn−k)−ϕ(c(B0))| ≤ s

)
≤ 2−(n−k)S(n− k, s)

Substituting (18) and (19) into (16),

(20) Pd(XVn−k + ξnvn ∈ B0) ≤
1

2

[
2−(n−k)S(n− k, s− 1) + 2−(n−k)S(n− k, s)

]
Now we consider the asymptotic variant of 2−mS(m, s) using Stirling’s Formula for large values of
m and use it in place of (20). Assuming without loss of any generality that m and s are even, we
see that

2−mS(m, s) = 2−m
s/2∑

j=−s/2

(
m

m/2 + j

)
= 2−m

s/2∑
j=−s/2

m!

(m/2 + j)!(m/2− j)!

= 2−m
s/2∑

j=−s/2

(1 + o(1))

√
2πm

(
m
e

)m
2π
√

m2

4 − j2 · (m/2 + j)m/2+j · (m/2− j)m/2−j · e−m

= 2−m
s/2∑

j=−s/2

(1 + o(1))

√
2πm ·mm

π
√
m2 − 4j2 · (m+ 2j)m/2+j · (m− 2j)m/2−j

· 2m

=

s/2∑
j=−s/2

(1 + o(1))

√
2

π
·
( m2

m2 − 4j2

)m/2
·
√

m

m2 − 4j2
·
(m− 2j

m+ 2j

)j
=

s/2∑
j=−s/2

(1 + o(1))

√
2

πm
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= (s+ o(1))

√
2

πm
And so for the probability, we get

(21)
1

2

[
2−(n−k)S(n− k, s− 1) + 2−(n−k)S(n− k, s)

]
=

1

2

(
[(s− 1) + o(1)]

√
2

πn
+ (s+ o(1))

√
2

πm

)
= [s− 1/2 + o(1)] ·

√
2

πm
But because of this notice that Pd(XVn−k + ξnvn ∈ B0) ≤ 2−mS(n, s), from which it follows that

Pd(XV ∈ B) ≤ 2−nS(n, s), which clearly raises a contradiction.
Our calculation of the probabilities is based on the premise that (17) holds. On treating the

first inequality, we see that ∆ <
√

(s− 1)2 + 1. The second inequality enforces the restriction
that s − 1 ≤ ∆. Now note that the fourth inequality is actually unnecessary since the constraint
imposed by it is already covered by the first two: squaring both sides, we see that ∆2(1+1/s)2 ≤ s2,
simplifying further and substituting s− 1 < ∆,

(s− 1)2 ·
(s2 + 2s+ 1

s2

)
≤ s2, or (s− 1)2(s+ 1)2 ≤ s4

which holds true for s > 2. This gives us the restrictions from the conjecture, and also finishes our
proof of the result from the conjecture.

�

4. Fourier Analytic Techniques

An essential generalization of the Littlewood-Offord problem that we have saved for this last
section is about some form of variation in the constraints imposed upon vi. While the combinatorial
method, as we have seen, provides sharp and exact estimates and bounds for the probability, it is
often difficult to generalize to be made applicable to other cases.
However, a Fourier-analytic approach suggested by Halasz in [Hal77] provided a new viewpoint
that gave bounds even though were not as sharp as due to the combinatorial strategies, could
be generalized across varying structures of vi. In many situations, we obtain sharper bounds by
imposing restrictions:

Example 4.1. Consider the closely related probabilistic notion sup
x∈R

P(XV = x), that is the least

upper bound on the probability that the linear combination XV is equal to a certain real x. Then
if V is a multiset in R such that all vi are distinct, then

sup
x∈R

P(XV = x) = O(n−3/2)

In fact, we can further show by Halasz methods a chain of bounds by increasing the restrictions

vi distinct =⇒ sup
x∈Rd

P(XV = x) = O(n−3/2)

vi + vj distinct =⇒ sup
x∈Rd

P(XV = x) = O(n−5/2)

vi + vj + vk distinct =⇒ sup
x∈Rd

P(XV = x) = O(n−7/2)
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Using the same Fourier anlaytic techniques, a broad generalization is also possible:

Theorem 9. For a set of vectors V , if |sm| is the number of m-sums that are equal, then

sup
x∈R

P(XV = x) = O(n−2m−
1
2 |sm|)

Theorem 9 reflects an important relationship between the structure of V and the the probability
itself: if more chains of m-sums are equal to one another, then we can get a larger bound on
sup P(XV = x), which does make some intuitive sense. A proof of this theorem and that of other
theorems like it can be found in [TV06] and [Hal77].
On the broader scale, Halasz result deeper insight into the structures of vi that allowed certain
types of small-ball probabilities to exist paving the way for the formulation of the Inverse-Littlewood
Offord theory. As for the Fourier analytic techniques, our focus in this paper will primarily be on
developing the following important concentration inequality along with the requisite background
in Fourier analysis.

Theorem 10. There exists a constant C such that for any unit ball B ∈ Rd and linear combination
of vectors X,

Pd(X ∈ B) ≤ C
∫
‖t‖≤1

|φX(t)| dt = C

∫
‖t‖≤1

∣∣E[exp(i〈t,X〉)]
∣∣ dt,

where φX(t) is the characteristic function of the probability distribution of X and ‖t‖ denotes the
standard Euclidean norm.

Definition 4.1. The characteristic function φX(t) of a random variable X with cumulative
distribution function FX(x) and density function fX(x) is defined by the following integral:

(22) φX(t) = E[exp(itX)] =

∫ ∞
−∞

eitxdFX(x) =

∫ ∞
−∞

eitxfX(x)dx

The characteristic function can be interpreted as the Fourier transform of the probability density
function fX(x). Conventionally, the Fourier transform is implemented as f̂(t) =

∫∞
−∞ f(x)e−2πitxdx,

but our definition of the characteristic function is just a rescaling of the aforementioned definition
and works better in probabilistic scenarios.
The inequality in Theorem 10 converts the problem of finding the small ball probability into the
calculation of an integral, which in some cases makes the problem easier. Another big advantage is
that the introduction of ideas from probability and Fourier analysis allows us to use powerful tools
from these fields, which once again will prove instrumental in solving for small ball probabilities.
Notice that X is actually forms a multivariate random probability distribution as it is a linear
combination of vectors with coefficients as i.i.d Bernoulli random variables, and so we will need a
higher dimensional analog to (22).

Definition 4.2. The characteristic function φX(t) of a multivariate random variable X is defined
for a probability density function fX(x) as

(23) φX(t) = E[exp(i〈t,X〉)] =

∫
Rd
ei〈t,x〉fX(x)dx

It is also important to note that given a characteristic function, we can recover the probability
density function by an inversion formula

Theorem 11 (Inversion theorem). For a multivariate random variable X, if φX(t) is an integrable
characteristic function for the probability density function fX(t), then

(24) fX(x) =
1

(2π)d

∫
Rd
φX(t)e−i〈t,x〉dt
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We do not provide a proof as it is somewhat engaged in probability theory. However, with this
theorem, we can move on to proving the concentration inequality.

Proof of Concentration inequality. To prove Theorem 10, we first observe that our small ball prob-
ability Pd(X ∈ B) can be expressed in terms of its density function fX(x) as follows:

(25) Pd(X ∈ B) =

∫
‖x−C0‖≤1

fX(x)dx

where C0 is the center of B. Our approach will be to define a new function k(t) and its Fourier
transform K(x), which we can embed with the necessary properties to bound the RHS of (25). Since
φX(t) = E[exp(i〈t,X〉)] is also the Fourier transform of fX(x), we can use Plancherel’s theorem
stated below to relate the two functions.

Theorem 12 (Plancherel’s Theorem). For two integrable functions f(t) and g(t) with sufficient
additional properties, let F (x) and G(x) be their Fourier transforms respectively. Then∫

Rd
f(t)g(t)dt =

1

(2π)d

∫
Rd
F (x)G(x)dx,

where · represents the complex conjugate.

Theorem 12 is often referred to as Parseval’s identity or equality, and in many cases is stated
without the 1/(2π)d term; the presence or absence of this term depends on the way we have defined

our fourier transform, and if we adhere to the conventional definition f̂(ω) =
∫
R f(t)·exp(−2πiωt)dt,

the 1/(2π)d factor goes away. See Theorem 25.9 of [How16] for more details and a proof.

Based on the definition of K(x), we have

(26) K(x) =

∫
Rd
k(t) · ei〈x,t〉dt

It is important to note that while φX(t) is a Fourier transform of fX(x), it represents a different
change of variables, i.e from x to t, and as a result Theorem 13 cannot yet be applied. To state the
relationship φX(t) =

∫
Rd exp(i〈t,X〉)fX(x)dx in a similar format, we use the inversion theorem to

get

(27) fX(x) =
1

(2π)d

∫
Rd
φX(t)e−i〈t,x〉dt

Now, if we take the complex conjugate on both sides,

(28) fX(x) =
1

(2π)d

∫
Rd
φX(t)e−i〈t,x〉dt =

1

(2π)d

∫
Rd
φX(t)ei〈t,x〉dt =

∫
Rd
φ′X(t)ei〈t,x〉dt

and so fX(x) is the Fourier transform of φ′X(t) := 1
(2π)d

φX(t). Now we can use Plancherel’s Theorem

to relate the two functions as follows:∫
Rd
k(t) φ′X(t) dt =

1

(2π)d

∫
Rd
K(x) fX(x) dx,

or equivalently, ∫
Rd
k(t)

φX(t)

(2π)d
dt =

1

(2π)d

∫
Rd
K(x)fX(x)dx

And so we finally get

(29)

∫
Rd
K(x)fX(x)dx =

∫
Rd
k(t)φX(t)dt
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Now we define k(t) as

k(t) =

{
|k(t)| ≤ c1 for ‖t‖ ≤ 1

k(t) = 0 for ‖t‖ ≥ 1
,

so that in combination with (29), we get

(30)

∫
Rd
K(x)fX(x)dx =

∫
Rd
k(t)φX(t)dt ≤ c1

∫
‖t‖≤1

φX(t)dt ≤ C
∫
‖t‖≤1

|φX(t)|dt

Our next step will be to bound the small ball probability by defining K(x) appropriately. We define
K(x) as

K(x) =

{
K(x) ≥ 1 for ‖x‖ ≤ c2, where c2 is a constant

K(x) ≥ 0 for ‖x‖ ≥ c2
From this and (30), the following chain of inequalities arise:

(31)

∫
‖x‖≤c2

fX(x)dx ≤
∫
Rd
K(x)fX(x)dx ≤ C

∫
Rd
|φX(t)|dt

As a final step, notice that we can translate K(x) by a factor of C0 by multiplying k(t) by the
phase exp(i 〈C0, x〉). So the following translated version of (31) also holds true:

(32)

∫
‖x−C0‖≤c2

fX(x)dx ≤ C
∫
Rd
|φX(t)|dt

Now for an appropriate radius c2, the definition of the small ball probability in (25) combined with
(32) finishes the proof

(33) Pd(X ∈ B0) =

∫
‖x−C0‖≤1

fX(x)dx ≤ C
∫
Rd
|φX(t)|dt

Note that even if c2 < 1, we can add the density function of a series of balls that can cover B, still
giving a finite constant C for which the above relation holds. �

Lastly, all we need to verify is the existence of such a function k(t). Notice that if we take

(34) k(y) :=

∫
y∈Rd

κ0(y)κ0(t− y)dy

where κ0(x) = 1 for‖x‖ ≤ 1/2 and is zero everywhere, k(t) suits our definition. As a reference, the
following illustrates our approach and the various inequalities considered:
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Example 4.2. To demonstrate the prowess of this concentration inequality, and Halasz Fourier
analytic method in general, we will give a proof of Erdos Result in Theorem 2, which states that

P1(X ∈ B) = P1(n, 1) = O(1/
√
n)

Proof of Theorem 2. Let V = {v1, v2, v3, . . . vn} be our set of real numbers with |vi| ≥ 1. Then
equipped with Theorem 10, all we need to show is that

(35)

∫
|t|≤1

∣∣E[ exp(it

n∑
j=1

ξjvj)
]∣∣dt = O(1/

√
n)

Now since ξj are i.i.d Bernoulli random variables,∣∣E[ exp(it
n∑
j=1

ξjvj)
]∣∣ =

∣∣E[ n∏
j=1

exp(itξjvj)
]∣∣ =

n∏
j=1

∣∣E[exp(itξjvj)]
∣∣ =

n∏
j=1

| cos(tvj)|

On applying Holder’s inequality to the integral,

(36)

∫
|t|≤1

∣∣E[ exp(it
n∑
j=1

ξivi)
]∣∣dt =

∫
|t|≤1

n∏
j=1

| cos(tvj)| dt ≤
n∏
j=1

( ∫
|t|≤1
| cos(tvj)|n dt

)1/n
And as a result, it is sufficient to show the bound stated in the following lemma

Lemma 3. For a constant c, sufficiently large n, and |vj | ≥ 1,

I =

∫ 1

−1
| cos(tvj)|n dt ≤

c√
n

Proof of Lemma 3. First, without loss of generality note that we can assume vj > 1 since for
negative vj we can just use the identity cos(−x) = cos(x). Additionally, because of the same

property of cos(x), we also have that
∫ 1
−1 | cos(tvj)|n dt = 2

∫ 1
0 | cos(tvj)|n dt = 2J . Our proof of

Lemma 3 will rely on the inequality | cos(x)| ≤ e−x2/2 for |x| ≤ π/2, which we can prove by looking
at the Maclaurin expansions of the two functions:

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · , and so cos(x) ≤ 1− x2

2
+
x4

24

e−x
2/2 = 1− x2

2
+
x4

8
− x6

48
+ . . . , and so e−x

2/2 ≤ 1− x2

2
+
x4

8
− x6

48
Consequently, we now need to show that

x4

8
− x6

48
≥ x4

24
, or equivalently

x4

12
≥ x6

48

which holds as long as x4(2 +x)(2−x) ≤ 0, and so also over the interval −π/2 ≤ x ≤ π/2. We can
now rescale our inequality to fit our integrand and get

(37) | cos(vjt)|n ≤ e−nv
2
j t

2/2 for |t| ≤ π

2vj

This last inequality provides insight into our general approach towards obtaining the mentioned
bound. Since the bound holds over one period of the f(t) = | cos(vjt)|n, we can bound each the

function over each period
[ (2k−1)π

2vj
, (2k+1)π

2vj

]
by an appropriately translated gaussian function. Note

that since the function peaks at kπ/vj over the aforementioned interval, the translated gaussian
must also have its maximum value translated kπ/vj units, and so we get the gaussian associated

with the interval
[ (2k−1)π

2vj
, (2k+1)π

2vj

]
as gk = exp(−n(kπ − vjt)

2/2). Over [0, 1], we will have to
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account for a total of (m + 1) peaks, where m = dvjπ e. and so a corresponding (m + 1) gaussians.

Since some peaks may lie outside [0, 1], we extend the interval to
[
− π

2vj
, (m+ 1/2) πvj

]
. Now since

e−n(kπ−vjt)
2/2 = e−n((k+1)π−vjt)2/2 when t =

(2k − 1)π

2vj
,
(2k + 1)π

2vj
,

f is completely bounded over the interval since the gaussians fill the interval completely. So then
we can replace the integral J by a finite sum of a chain of (m+ 1) gaussians gk integrated over the

bound
[ (2k−1)π

2vj
, (2k+1)π

2vj

]
respectively.

J <

∫ π/2vj

−π/2vj
e−nv

2
j t

2/2dt+ · · · +

∫ (2k+1)π
2vj

(2k−1)π
2vj

e−n(kπ−vjt)
2/2dt+ · · · + `e−n(mπ−vjt)

2/2dt

(38) So, J <
m∑
`=0

∫ (2`+1)π
2vj

(2`−1)π
2vj

g`(t) dt

The figure below illustrates this process:

Now to evaluate the integral of the translated gaussian g`(t) = exp(−n(`π−vjt)2/2), we first make

the substitution u = `π − vjt, for which dt = −dt
vj

.

(39)

∫ (2`+1)π
2vj

(2`−1)π
2vj

g`(t) dt =
1

vj

∫ `π/2

−`π/2
e−nu

2
du

Furthermore, since e−nu
2/2 > 0 for all R, we can replace the limits of integration to span over R.

(40)
1

vj

∫ `π/2

−`π/2
e−nu

2
du <

1

vj

∫ ∞
−∞

e−nu
2
du =

1

vj

√
2π

n

where the last equality follows from our evaluation of RHS of (4). From this and (38), we get the
desired

I < 2m

vj

√
2π

n
, and so

∫ 1

−1
| cos(tvj)|n dt = O(1/

√
n)

�
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5. Further Research

The Fourier analytic techniques mentioned in the last section have had a profound impact on the
development of the Littlewood-Offord Problem. Theorem 10 shows that decreasing the additive
structure of V , we could decrease the concentration probability of XV . Using similar methods,
many such results can be shown that exhibit a clear relationship between the structure of V and
the small ball probability. So in [TV09], the authors asked and partly answered the following
question that became the premise of the Inverse Littlewood-Offord Theory:

Question 5.1. Assume that for some constant c,

lim
n→∞

sup
x∈Rd

P(XV = x) ≥ n−c

what can we say about the structure of V and about the vectors vi?

In the same paper, Tao and Vu proved a series of inverse theorems that proposed the following
possible generalization:

Theorem 13. If sup P(XV = x) is large, then V must have a strong additive structure.

We refer the reader to [TV09] for more on inverse Littlewood-Offord theory.
Another interesting possible generalization is to analyze the probability when ξi have an arbitrary
distribution, which has recently been explored in [JK20].



THE LITTLEWOOD-OFFORD PROBLEM 19

References

[Con16] Keith Conrad. Stirling’s formula. Available in http://www. math. uconn. edu/˜ kconrad/blu
rbs/analysis/stirling. pdf, 2016.

[Erd45] Paul Erdös. On a lemma of littlewood and offord. Bulletin of the American Mathematical Society, 51(12):898–
902, 1945.
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