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1 Introduction

The probabilistic method is a method of attacking combinatorics problems using probabilistic
tools. The general method works to show the existence of an object satisfying certain
probabilities by showing that the probability for its existence in a certain probability space
is positive.

In this paper, we follow the exposition of [1] and demonstrate the power of two simple
probabilistic methods, alterations and the second moment method, through proving results
in different combinatorial scenarios.

2 Alterations

In general, the alterations method entails showing the existence of an object that is fairly
close to satisfying the requirements, and then“altering” it in some way to obtain an object
of our desire.

2.1 Ramsey Numbers

The Ramsey number R(k, l) is the minimum number n such that any two-coloring of the
complete graph Kn contains either a red Kk or a blue Kl. Equivalently, if we have R(k, l) > n,
we can find a two-coloring of Kn that contains neither a red Kk nor a blue Kl. Using the
probabilistic method, we could prove the following lower bounds on Ramsey numbers.

Theorem 2.1. For all integers n and p ∈ [0, 1]

R(k, l) > n−
(
n

k

)
p(

k
2) −

(
n

l

)
(1− p)(

l
2).

Proof. Consider a random two-coloring of the complete graph Kn where each edge is colored
red with probability p. Let X be the total number of red Kk and blue Kl subgraphs. Then
by the linearity of expectation, we have

E(X) =

(
n

k

)
p(

k
2) −

(
n

l

)
(1− p)(

l
2).
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As a result, there exists a coloring of Kn with at most E(X) red Kk and blue Kl subgraphs.
If we remove one vertex from each of these subgraphs, then we obtain a two-colored complete
graph with neither a red Kk nor a blue Kl with n− E(X) vertices.

In this proof, we first showed the existence of a graph with a certain number of undesirable
cliques using the probabilistic method, and then modify the graph so that it no longer has
those cliques, which is the crux of the alteration method.

2.2 Heibronn Triangle Problem

Next, we look at an example in combinatorial geometry, the Heilbronn triangle problem,
where we try to arrange a set of points in a compact region of the plane such that the
triangles formed by the points are as big as possible. More precisely, let S be a set of n
points in a unit square, and let T (S) denote the area of the smallest triangle formed by any
three points in S. We are interested in the arrangements of points that maximize this area,
so define T (n) to be the supremum of T (S) over all possible sets S with n points.

Heilbronn’s original conjecture was T (n) = O(1/n2), which was disproved by Komlós,
Pintz and Szemerédi, who showed that the lower bound is given by T (n) = Ω(log n/n2).
Here we present and prove a simpler lower bound T (n) = Ω(1/n2).

Theorem 2.2. There is a set S of n points in the unit square U such that T (S) ≥ 1/ (100n2).

Proof. We first obtain a probabilistic bound for the area of a random triangle. Let A,B,C
be three points chosen uniformly at random from the unit square, and let [ABC] denote its
area. We are interested in calculating Pr([ABC] ≤ ε).

If the distance |AB| = x, then the height of the triangle ABC from C to AB must
be at most 2ε/x, so C must lie in a strip with width 4ε/x and length at most

√
2. Since

Pr(x ≤ |AB| ≤ x+ dx) ≤ π((x+ dx)2 − x2) = 2πxdx, we integrate to obtain

Pr([ABC] ≤ ε) ≤
∫ √2
0

4ε

x
·
√

2 · 2πxdx = 16πε.

Then, we choose 2n points P1, . . . , P2n in the unit square uniformly and randomly. Let
X be the number of triangles PiPjPk with area less than 1/(100n2). By the linearity of
expectation, we have

E(X) =

(
2n

3

)
Pr([PiPjPk] ≤ ε) ≤ (2n)3

6
· 16π

100n2
< n.

Therefore, there exists a set of 2n points such that there form fewer than n triangles with
area less than 1/100n2. After removing one point from each triangle, we have a set of at
least n points with no small triangles.

Erdős gave an ingenious explicit construction for the bound T (n) ≥ 1/2(n−1)2. Consider
all the points (x, x2) on the lattice Zn × Zn. Note that no three points are collinear since a
quadratic has at most two roots. Since the smallest area a lattice triangle can have is 1/2,
we have exhibited a set of n points in a [0, n− 1]× [0, n− 1] square with no triangle smaller
than 1/2. Scaling down by a linear factor of n− 1 results in the claimed bound.
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3 The Second Moment

The second moment method is built upon Chebyshev’s inequality, which concerns the vari-
ance of a random variable. The variance of X is defined to be

Var(X) = E((X − E(X))2).

The variance is an indicator of how much X deviates from its expectation. To ease the
notation, let µ denote the expectation and σ2 denote the variance.

Theorem 3.1 (Chebyshev’s inequality). For any positive λ,

Pr(|X − µ| ≥ λσ) ≤ 1

λ2
.

Proof.
σ2 = E((X − µ)2) ≥ (λσ)2 Pr(|X − µ| ≥ λσ).

We have the following corollaries of Chebyshev’s inequality when X is a nonnegative
integral-valued random variable.

Corollary 3.2. Pr(X = 0) ≤ Var(X)

E(X)

2

.

Corollary 3.3. If Var(X) = o(E(X)2)), then X > 0 and furthermore X ∼ E(X) almost
always.

Next, we are interested in how variance behaves under addition. Let X =
∑n

i=1Xi be a
sum of random variables Xi. Then by the linearity of expectation, the variance of X can be
expanded to be

Var(X) =
n∑
i=1

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj),

where the covariance of two random variables Xi and Xj is defined to be

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj).

If two random variables are independent, then their covariance is zero, so in the case that
X is a sum of independent variables, the variance is linear.

Suppose further that each Xi is an indicator random variable for an event Ai where
Xi = 1 with probability pi and Xi = 0 with probability 1− pi. Then it is simple to calculate
that E(Xi) = pi and Var(Xi) = pi(1− pi) ≤ E(Xi). Therefore, we have

Var(X) ≤ E(X) +
∑
i 6=j

Cov(Xi, Xj)

in the case then Xi are indicator random variables.
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If Xi and Xj are not independent and i 6= j, we write i ∼ j, and we have

Cov(Xi, Xj) = E(XiXj)− E(Xi) E(Xj) ≤ E(XiXj) = Pr(Ai ∧ Aj).

Therefore, we can rewrite the inequality to be

Var(X) ≤ E(X) + ∆

where
∆ =

∑
i∼j

Pr(Ai ∧ Aj).

Therefore, in this case we can rewrite Corollary 3.3 as the following.

Corollary 3.4. If E(X)→∞ and ∆ = o(E(X)2)), then X > 0 and furthermore X ∼ E(X)
almost always.

Furthermore, if X1, . . . , Xn are symmetric, we have

∆ =
∑
i

Pr(Ai)
∑
j∼i

Pr(Aj|Ai),

and as a result of the symmetry, the second summand is independent of the index and we
set it to be

∆∗ =
∑
j∼i

Pr(Aj|Ai),

then we have
∆ = ∆∗

∑
i

Pr(Ai) = ∆∗ E(X).

We obtain another version of Corollary 3.3.

Corollary 3.5. If E(X)→∞ and ∆∗ = o(E(X)), then X > 0 and furthermore X ∼ E(X)
almost always.

3.1 Random Graphs

Informally, a random graph G(n, p) is the probability space that consists of graphs with n
vertices where edges are formed uniformly and independently between each pair of vertices
with probability p. For a graph property A, if there exists a function r(n) such that if
p(n)� r(n) then G(n, p) almost always does not satisfy A, and if p(n)� r(n) then G(n, p)
almost always satisfies A, then r(n) is a threshold function of property A. We prove some
results on threshold functions for certain graph properties using the second moment method.

Let ω(G) denote the maximal size of a complete subgraph of G.

Theorem 3.6. A threshold function for ω(G) ≥ 4 is n−2/3.
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Proof. Since there are 6 edges in K4, the probability of any four vertices in G forming a
clique is p6. By the linearity of expectation, the expected number of 4-cliques in G is given
by

E(X) =

(
n

4

)
p6 ∼ n4p6

24
.

Therefore, when p� n−2/3, we have E(X) = o(1) and X = 0 almost always.
Conversely, when p� n−2/3 and thus E(X)→∞, we calculate ∆∗. Let S and T be sets

of 4 vertices and XS and XT denote the indicator random variables of S and T forming a
4-clique. Then S ∼ T if and only if |S ∪ T | = 2 or 3. For a given set S, there are O(n2)
sets T such that T and S share a pair of vertices. And in this case, if S forms a 4-clique,
T must already contain an edge, so Pr(AT |AS) = p5. Similarly, there are O(n) sets T that
share three vertices with S and Pr(AT |AS) = p3. Since p� n−2/3, we have

∆∗ = O(n2p5) +O(np3) = o(n4p6) = E(X).

Therefore, Corollary 3.5 implies X > 0, so G contains a 4-clique almost surely.

Using the same method, we can prove a more general result on balanced subgraphs, not
just 4-cliques.

Definition 3.7. The density ρ(G) of a graph G with v vertices and e edges is given by
ρ(G) = e/v. A graph H is balanced if ρ(H) ≥ ρ(H ′) for every subgraph H ′.

Note that complete graphs are balanced since ρ(Kn) = (n− 1)/2.

Theorem 3.8. A threshold function for G containing a subgraph H with v vertices and e
edges is n−v/e if and only if H is balanced.

Proof. We first consider the case when H is balanced. Let S be a set with v vertices in G,
and AS be the event that G|S contains H, then

pe ≤ Pr(AS) ≤ v!pe

since there are potentially v! arrangements for H. Let XS be the indicator random variable
for AS and X =

∑
|S|=vXS. By linearity of expectations,

E(X) =

(
n

v

)
Pr(AS) = Θ(nvpe).

Thus, if p� n−v/e, E(X) = o(1), and X = 0 always surely.
If p� n−v/e, E(X)→∞, and we calculate

∆∗ =
v−1∑
i=2

∑
|T∪S|=i

Pr(AT |AS)

since S ∼ T if and only if S and T share between 2 to v − 1 vertices. Fixing S, for each
number of shared vertices i, there are O(nv−i) choices for T each with O(1) possible copies
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of H on it. Since H is balanced with density e/v, there are at most ie/v edges with both
vertices in S, and thus at least e− ie/v edges not in the induced subgraph of S. Therefore,

Pr(AT |AS) = O(pe−ie/v)

and

∆∗ =
n−1∑
i=2

O(nv−ipe−ie/v)

=
n−1∑
i=2

O((nvpe)1−i/v)

=
n−1∑
i=2

o(nvpe)

= o(E(X)).

By Corollary 3.5, X > 0 almost surely.
Conversely, if H is not balanced, there exists a subgraph H ′ ≤ H with v′ vertices and

e′ edges such that e′/v′ > e/v. Let α be a number such that v′/e′ < α < v/e, then by a
similar argument as above, if p = n−α � n−v

′/e′ , then E(X) = o(1) where X is the number
of copies of H ′, so G does not contain H ′ almost surely. Since H ′ is a subgraph of H, G does
not contain H almost surely as well.

With a few additions and modifications to the proof above, we can arrive at the following
more generalized result.

Theorem 3.9. Let H be a balanced grpah with v vertices, e edges, and a automorphisms.
Then the number of copies of H in a random graph G where p� n−v/e is almost always

X ∼ nvpe

a
.

3.2 Distinct Sums

A set of positive integers S = {x1, . . . , xn} is said to have distinct sums if the sums
∑

x∈R x
of each subset R ⊂ S are distinct. We are interested in the maximal size f(n) of a set S ⊂ [n]
with distinct sums.

Since the set S = {2k : 0 ≤ k ≤ blog2 nc} has distinct sums, we must have f(n) ≥
blog2 nc + 1. It remains an open problem whether f(n) ≤ log2 n + O(1), i.e., we cannot
do much better than the set of powers of two. We can obtain an upper bound through a
simple counting argument. Since there are 2f(n) total subsets, and the maximal subset sum
is nf(n), we must have 2f(n) ≤ nf(n) since the sums are distinct, which gives the bound

f(n) ≤ log2 n+ log2 log2 n+O(1).

With the second moment method, we can obtain a slightly better bound.
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Theorem 3.10. f(n) ≤ log2 n+ 1
2

log2 log2 n+O(1).

Proof. Let the set S ⊂ [n] be {x1, . . . , xk}. Define the random variable

X = ε1x1 + ε2x2 + · · ·+ εkxk

where εi is chosen randomly and independently from {0, 1}. Thus, by linearity of expecta-
tions, we have E(X) = 1

2

∑k
i=1 xi and since x2i ≤ n2, we can bound the variance

Var(X) =
1

4

k∑
i=1

x2i ≤
n2k

4
.

By the Chebyshev’s inequality, we have for λ > 1,

Pr(|X − µ| ≥ λn
√
k

2
) ≤ 1

λ2
.

Reversing the probability gives

Pr(|X − µ| < λn
√
k

2
) ≥ 1− 1

λ2
.

Since S has distinct sums, each value X can potentially achieve appears with possibility 0
or 1/2k since there are 2k total choices for all the εi. Therefore, we have an upper bound

Pr(|X − µ| < λn
√
k

2
) ≤ 1

2k
(λn
√
k + 1).

Combining the two bounds, we have

1− 1

λ2
≤ 1

2k
(λn
√
k + 1),

which rearranges to

n ≥ 2k(1− λ−2)− 1

λ
√
k

.

Any λ > 1 gives the desired asymptotic bound.
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