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Abstract

Starting from the basics of graph theory this paper explores the 5 colour theorem
followed by the 4 colour theorem step by step as an attempt to enhance understanding
of the two theorems.

1 Motivation

Suppose you are given a map to colour. What would be the minimum number of colours
required to colour it? To visualise this problem more easily we can transform the map into
a graph. If we denote each country as a vertex and each boundary as an edge we keep intact
all necessary information. Here the problem would be to not have any two vertices that
share an edge to have the same colour. This means we would have to chromatically colour
the graph i.e. colour it so that we only use a minimum number of colours.

Figure 1: For the sake of simplicity consider this world map which has to be coloured
continent wise.

1



Africa

South America

Europe

Asia

Australia

North America

Antarctica

Figure 2: Map to Graph

2 Background

Graph Colouring is the colouring of vertices or edges in a graph such that no two adjacent
nodes have the same colour. The Chromatic Number of a graph is the least number of
colours needed to colour a graph. It is denoted as χ(G) or k-Chromatic-Graph, where k is
the minimum number of colours required to colour the graph. In Figure 2, χ(G) = 3 and it
is a 3-Chromatic-Graph.

3 The Five Colour Theorem

Theorem 1. (Five Color Theorem) Every simple planar graph can be colored with 5 colors.

Lemma 2. Every Planar Graph contains a vertex with degree at most 5.

3.1 Understanding Thereom 1 and Lemma 2

A Graph is Planar when it can be drawn in the plane without any edges crossing it.

Theorem 3. When G is a connected planar graph which has with n vertices and m edges
that divide it into r regions then r = m− n+ 2

Proof. by Mathematical Induction.
Base Case: m1 = 1 and n1 = 2. r1 = m1 − n1 + 2 = 1. Which is true since only 1 region is
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there.

Induction Step: Assume the formula is true for some k such that rk = mk − nk + 2 is
true for Graph Gk.
Verification Step: Add an edge (u, v) to Gk results in a graph Gk + 1. Let x = k + 1

Case 1: Vertices u and v are already a part of Gk. Thus, rl = rk + 1, nl = nk and
ml = mk + 1.
rl = ml − nl + 2
rk + 1 = mk + 1 − nk + 2
rk = mk − nk + 2
Thus the formula has been proven for case 1.

Case 2: v is a vertex added to Gk. Thus, rl = rk, nl = nk + 1 and ml = mk + 1.
rl = ml − nl + 2
rk = mk + 1 − nk − 1 + 2
rk = mk − nk + 2
Thus the formula has been proven for case 2.

Lemma 4. For a planar graph 3r ≤ 2m.

Proof. All planar graphs can be turned into maximal planar graphs or a simple planar graph
by adding edges to the graph so that all regions are bound by 3 edges and the graph remains
planar. Since the number of edges in a maximal graph are the maximum number of edges
possible to have in a planar graph we are going to compare it to the number of edges in a
complete graph. A complete graph has the maximum number of edges in a graph, all vertices
have an edge between them. For ease of understanding we will double count both sides of
the equation.
In a triangulation or maximal graph each side is bounded by three edges thus the number
of edges are 3r. The total number of edges in a complete graph would be equal to n(n− 1)
which is equal to 2m. Thus 3r ≤ 2m. This is true because a planar graph can never have
more edges than a complete graph.

Theorem 5. k5 is not planar.

Proof. The theorem means that a complete graph of 5 vertices is not planar. k5 is read as a
complete graph of 5 vertices.
When n = 5, 2m = n(n− 1) = 5(4) = 20.
r = m− n+ 2 = 10 − 5 + 2 = 7, 3r = 3(7) = 21.
By lemma 4, 3r ≤ 2m and 21 ≤ 20 is a contradiction. Thus, k5 is non planar.

Lemma 6. m ≤ 3n− 6

Proof. r = m− n+ 2, 3r = 3m− 3n+ 6
3r ≤ 2m (Lemma 4)
3m− 3n+ 6 ≤ 2m
m ≤ 3n− 6
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Theorem 7. If G is planar then G has a vertex of degree at most 5.

Proof. G is a connected component. If degree of all vertices is greater than 5 then 2m ≥ 6n.
By lemma 6, 6n− 12 ≥ 2m.
6n ≤ 2m ≤ 6n− 12 is a contradiction. Thus there does exist a vertex of degree at most 5 in
a planar graph.
(Theorem 7 is Lemma 2.)

3.2 Proof by Mathematical Induction

Proof. Base Step: n ≤ 5, where n is the the number of vertices in planar graph G. This is
true because the number of colours available aren’t less than the number of vertices. Thus
each vertex can have a unique colour.

Induction Step: vertex v has less than 5 vertices connected to it i.e. deg(v) ≤ 4. Thus
k = 4. G is 5-colourable since v plus the number of vertices it is connected to is 5 and we
have 5 colours.

Verification for k + 1: Here deg(v) = 5. First assign a unique colour to the 5 vertices
and leave v uncolored. Since we have already used all 5 colours for the graph we would
have to repeat a colour for v. Assume that the 5 vertices are arranged in clockwise direction
around v in the order v1, v2, v3, v4, v5.
If v1 and v3 are disconnected then either of them can be coloured in a reverse way so that
they both have the same colour and v is coloured by one of the colours that previously v1 or
v3 was coloured with. .
If v1 and v3 are connected then v2 and v4 aren’t connected, to preserve the planarity of G
since it would cause the edges to cross. Thus there must exist some vk and vm that doesn’t
have an edge between themselves so that v can be coloured. Thus we have verified for k+ 1
which concludes the proof of the 5 colour theorem.

4 The Four Colour Theorem

Theorem 8. The chromatic number of a planar graph is at most 4.

4.1 Comparing the 5 colour theorem to the 4 colour theorem

4.1.1 Why different proofs?

The v5 in the proof of the 5 colour theorem has little significance so a natural question would
be why can’t the 4 colour theorem be proven using the same proof. Logically the same proof
is valid however in the case of the four colour theorem lemma 2 isn’t necessarily true for v.
Thus the 4 colour theorem requires a different proof.
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4.1.2 Why is the proof of the 4 colour theorem harder?

Due to the lack of lemma 2 the number of configurations (unique cases/possibilities) is more
than 600 for the 4 colour theorem which is way more than 3 cases we used to prove the 5
colour theorem. The problem becomes much harder when the number of configurations to
be considered increase to such high numbers.

4.2 What does the proof essentially do?

A set of graph configurations such that any smallest counterexample of the 4 colour theorem
must contain at least a graph as a sub graph is known as an unavoidable set. And a reducible
configuration is a graph with a reducible configuration which can be reduced to a smaller
graph, satisfying the condition that if a sub graph can be colored with 4 colors, then the
original graph can also be colored with 4 colors.
If an unavoidable set of reducible configurations can be found, then it would be enough to
show that every graph in that set can be 5-colored. This means that if a counterexample
must contain one of a set of graphs as a sub graph, but that if any of those sub graphs
were part of a counterexample, a smaller counterexample existed. This demonstrated the
result by showing that there cannot be any smallest counterexample, so there cannot be any
counterexample at all.

In 1976 Appel Haken managed to prove the theorem for the first time in the world with
1936 configurations which were reduced by Robertson et al to approximately 600 configura-
tions in 1997.

4.3 Use of Computers

The proof of the 4 colour theorem is extremely elaborate and relies on the computer. Since
the proof requires an exhaustive search a computer decreases the risk of mistakes and makes
the proof faster. Other than efficiency and accuracy there isn’t any special reason the proof
requires the use of computers.
This proof cannot be proven by hand because we do not know such a proof yet. The ones
we do know are too long and tedious to do manually. It’s possible that there is no short
and concise proof of this theorem, regardless of which a computer assisted proof is in no way
inadequate.

4.4 Applications

Though the motivation of the theorem is of map colouring, the application of it isn’t actually
used for colouring maps. It’s actually used in mobile phone masts for signal and other such
things.

5 Conclusion

Both theorems have some similar conditions and even though are loosely related vary greatly
in terms of their proofs. While one can be proved quite easily the other requires a computer
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and hours of time.
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