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Abstract. In this paper, we will discuss the shuffling of playing cards and how it affects
the randomness of the deck as a whole. To do this, we will be analyzing different kinds of
shuffles, variation distances, strong uniform stopping rules, and other related ideas.

We will start with two simple, yet powerful combinatorial problems. They will prove to
be useful in later sections.

1. The Birthday Paradox

Let us take n random people. What is the probability that they all have different birth-
days? We have

p(n) =
n−1∏
i=1

(1− i

365
).

This is quite simple to see; If the first i people have different birthdays, the probability that
the (i+ 1)-st person doesn’t repeat a birthday is 1− i

365
, because there are 365 - i birthdays

left.

Remark 1.1. For the Birthday Paradox formula, we have p(n) < 1
2

for n = 23, p(n) ≈ .01
for n = 70, and exactly 0 for n > 365(Pigeonhole Principle). A closely related idea to the
Birthday Paradox is its inverse; the probability of having two people with the same birthday
out of n people. We have opposite probabilities; with the probability hitting .99 after only
70 people. One would think that you need far more people to satisfy a birthday repeat!

2. The Coupon Collector

Let’s say we’re collecting baseball cards. They are sold in envelopes where we cannot see
which card we are getting, so there is no restriction on buying the same card multiple times.
If there are n different cards, what is the expected number of pictures we have to buy until
we get each one at least once? If we already have k distinct cards, the probability to get
one we already have is k

n
. Thus, the probability to need exactly s drawings for the next new

card is (
k

n

)s−1(
1− k

n

)
.

And so the expected number of times we have to buy for the next new card is∑
s≥1

(
k

n

)s−1
(1− k

n
)s,

1
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where we are summing the values of s as our number of cards bought changes. We have a
very nice way of calculating this; it goes as follows:∑

s≥1

(
k

n

)s−1(
1− k

n

)
s

=
∑
s≥1

(
k

n

)s−1
s−

∑
s≥1

(
k

n

)s
s

=
∑
s≥0

(
k

n

)s
(s+ 1)−

∑
s≥0

(
k

n

)s
s

=
∑
s≥0

(
k

n

)s
We will now define a short lemma that will help us take this further.

Lemma 2.1. The infinite geometric series

Q =
1

q
+

1

q2
+

1

q3
+ ...

has Q =
1

q − 1

Proof. We have the geometric series

Q =
1

q
+

1

q2
+

1

q3
+ ...

Assuming q > 1, we have

qQ = 1 +
1

q
+

1

q2
+ ... = 1 +Q

and thus,

Q =
1

q − ‘1
�

Back to the coupon collector, we now have∑
s≥0

(
k

n

)s
=

1

1− k
n

,

as the expected number of buys for the next new card. Now, the expected number of buys
until we have each of the n cards is

n−1∑
k=0

1

1− k
n

=
n

n
+

n

n− 1
+ ...+

n

2
+
n

1
≈ n log n

So, our answer to the coupon collector problem is that one needs roughly n log n purchases.
Now, let us find the probability that we need more than n log n purchases. If we let Vn be
the number of cards we need to buy(remember, E[Vn] ≈ n log n), for n ≥ 1 and c ≥ 0, the
probability that we need more than m = dn log n+ cne purchases is
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Prob[Vn > m] ≤ e−c

This can be seen if we let Ai be the event that card i is not purchased in the first m purchases,
then

Prob[Vn > m] = Prob[
⋃
i

Ai] ≤
∑
i

Prob[Ai] = n
(
1− 1

n

)m
< ne

−m
n ≤ e−c

Let us now transition to a deck of cards. We will label them 1 through n, with the top
card being 1 and the bottom one being n. From now on, we will call ϑn the set of all the
permutations of the list 1, 2, 3,...n. We define shuffling to be applying certain permutations
to the order of the cards. Hopefully, this permutation is completely arbitrary(i.e. we apply
some random permutation π ∈ ϑn, each of whose probability is 1

n!
). If we were able to do

this, that would be quite the miracle and indeed, very ideal for card games. However, this
isn’t quite what happens. When we shuffle one time in real life, certain permutations occur
with a higher probability than others, and after we shuffle more, we expect the deck to be
as ”close to random” as it can be.

3. Top-in-at-random shuffles

Though maybe not the most effective kind of shuffling, top-in-at-random shuffles can be
quite good at generating randomness(assuming one has the patience to do it many, many
times!). These shuffles are performed like this: take the top card from the deck, and insert
it back in at a completely random place, n of which exist. Now, how do we exactly measure
”randomness”? We do this using variation distance of probability distributions. Here are
some examples of distributions: our starting distribution E, which is

E(id) = 1; (the probability of it being itself is 1)
E(π) = 1; (the probability of it being any other random permutation is 0)

And we also have the uniform distribution U, which is defined as

U(π) = 1
n!

for all π ∈ ϑn

Definition 3.1. The variation distance between two probability distributions Q1 and Q2 is

||Q1 −Q2|| :=
1

2

∑
π∈ϑn

|Q1(π)−Q2(π)|.

In the following equations, ”being close to random” can be interpreted as ”having small vari-
ation distance from the uniform distribution.”The distance between the starting distribution
and uniform distribution is quite the opposite:

||E − U || = 1− 1

n!

And after 1 top-in-at-random shuffle:

||Top− U|| = 1− 1

(n− 1)!

Not much better. Let us call the probability distribution on ϑn that we get from doing
top-in-at-random shuffles k times as Topk. We want to find out how the variation distance
d(k) := ||Topk − U|| goes to zero exponentially fast, as we can probably infer. We will do
this using strong uniform stopping rules.
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4. Strong uniform stopping rules

Imagine if a casino manager analyzed the shuffling of a deck of cards, and watches what
permutations are applied. After a number of shuffles depending on the permutations they
saw, they say ”STOP!”. In other words, they have some stopping rule that they use to end
the shuffling.

Definition 4.1. The stopping rule is strong uniform if the following is true for all k ≥ 0:

If the process is stopped after exactly k steps, then the resulting permutations of the deck
have uniform distribution.

Let T be the number of shuffles until the stopping rule tells the manager to say ”STOP!”;
T is random and depends on the stopping rule. In addition, let the ordering of the deck
after k shuffles be given by a random variable Xk ∈ ϑm. So we have the stopping rule is
random if for all values of k,

Prob[Xk = π|T = k] =
1

n!
for all π ∈ ϑn

This allows us to find stopping rules, as well as give us effective upper bounds on variation
distances like d(k) = ||Topk − U||. For example, a strong uniform stopping rule for top-in-
at-random shuffles is

Stop shuffling after the original bottom card(nth card) is first inserted back into the deck.

We can see this easily with 5 cards:

1, 2, 3, 4, 5
2, 3, 4, 1, 5
3, 2, 4, 1, 5
2, 4, 1, 5, 3
4, 1, 5, 3, 2
1, 5, 3, 4, 2

...

As we can see, the ordering of the cards underneath the 5 is quite uniform. Now let Ti be the
random variable which keeps track of the number of shuffles until, for the first time, i cards
lie below the last card in the deck(labeled n). So we now have to determine the probability
distribution of

T = T1 + (T2 − T1) + ...(Tn−1 − Tn−2) + (T − Tn−1)
where each Ti−Ti−1 corresponds to the number of shuffles between when i-1 cards lie beneath
n and when i cards lie beneath n. Does this sound familiar? Yes! Each Ti − Ti−1 is also
the number of purchases the coupon collector needs from the Ti−1-th card to the Tith card.
And because the coupon collector and the top-in-at-random shuffler perform the same kind
of processes, we can say that the strong uniform stopping rule for top-in-at-random shuffling
takes more than k = dn log n+ cne steps with probability:

Prob[T > k] ≤ e−c(as we claimed for the coupon collector problem)

And this means that after k = dn log n+ cne top-in-at-random shuffles, we have

d(k) = ||Topk − U || ≤ e−c.

We will prove this using the following lemma.
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Lemma 4.2. Let Q : ϑn → R be any probability distribution that defines a shuffling process
Qk with a strong uniform stopping rule whose stopping time is T. Then for all k ≥ 0,

||Qk − U|| ≤ Prob[T > K].

Proof. If X is a random variable with values in ϑn, with probability distribution Q, then
we write Q(S ) for the probability that X takes a value in S ⊆ ϑn. Thus we have Q(S ) =
Prob[X∈S], and in uniform distribution Q = U we get

U(S) = Prob[X ∈ S] =
|S|
n!

For every subset S ⊆ ϑn, we have the probability after k steps our deck is ordered in a
permutation in S as
Qk(S ) = Prob[Xk ∈ S]

=
∑
j≤k

Prob[Xk ∈ S ∧ T = j] + Prob[Xk ∈ S ∧ T > k]

=
∑
j≤k

U(S)Prob[T = j] + Prob[Xk ∈ S|T > k] · Prob[T > k]

= U(S)(1− Prob[T > k]) + Prob[Xk ∈ S|T > k] · Prob[T > k]

= U(S) + (Prob[Xk ∈ S|T > k]− U(S)) · Prob[T > k].

So we get

|Qk(S)− U(S)| ≤ Prob[T > k]

and because

Prob[Xk ∈ S|T > k]− U(S)

is the difference of two probabilities, it has | · | ≤ 1. �

So we have proved this upper bound for the number of top-in-at-random shuffles needed
to get ”close to random”.

Theorem 4.3. Let c ≥ 0 and k := dn log n + cne. After performing k top-in-at-random
shuffles on a deck of n cards, the variation distance from the uniform distribution satisfies

d(k) := ||Topk − U|| ≤ e−c.

This shows us the true inefficiency of top-in-at-random shuffles - with the bounds given
by our theorem, we need more than n log n ≈ 205 shuffles until a standard deck of 52 cards
reaches uniform distribution! So, let us move on to the one and only(and far superior) riffle
shuffle.
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5. Riffle shuffles

A riffle shuffle is performed by taking a deck of cards, splitting into two parts, and
interleaving them in some way. This can be done by dropping cards from alternating parts
in some irregular pattern, or ”riffling” the parts together, holding a half-deck in each hand.
Let’s say the deck is split so that the top t cards are in one hand, and the rest of the deck(n-t
cards) is in the left hand. We have

(
n
t

)
distinct ways to interleave the two hands of cards,

each of which generates a different permutation. However, we must remember that for each
t, there is exactly 1 possibility that each card is inserted right back into the spot it was
removed from(identity permutation). For example, if we took 26 cards off the top of the
deck, the identity permutation would be if we inserted those 26 cards in the same order back
on top of the deck. Now, let us look at the probability distribution of the function Rif on
ϑn in two different ways.

1. Rif : ϑn → R is defined as

Rif(π) =


n+1
2n

if π = id
1
2n

if π has two separate, consecutive, increasing sequences

0 otherwise

2. Inverse shuffling is when a subset of cards in the deck is taken out from the deck, and
placed on top of the remaining cards. The order in both parts of the deck is not changed.
Another way to think about reverse shuffling is assigning a ”1” or a ”0” to each card(with
equal probability), and moving the cards labeled ”0” to the top.
It’s quite easy to see that these two descriptions are the same; whenever each and every
single card labeled ”0” is on top of each and every single card labeled ”1”, we have the
identity permutation. Now, let us dive into the analysis of riffle shuffles.

Theorem 5.1. After performing k riffle shuffles on a deck of n cards, the variation distance
from a uniform distribution satisfies the inequality

||Rifk − U|| ≤ 1−
n−1∏
i=1

(1− i

2k
).

Proof. Inverse shuffles correspond to the probability distribution Rif(π) := Rif(π−1) Because
every permutation has its unique inverse, and the statement U(π) = U(π−1) allow us to say

||Rifk − U|| = ||Rifk − U||

(Reeds’inversion lemma)
So in every inverse riffle shuffle, every card gets assigned a digit 0 or 1, as we defined earlier.
Let’s say we inverse riffle shuffle k times, then each card has a string of length k 0s and 1s
attached to it. Our stopping rule is :

”Stop shuffling as soon as all cards have distinct strings attached to them” Since each
assigned ”bit” is completely random, as well as independent of previously assigned bits,

this stopping rule is strong uniform! For example, if we take n = 5 cards, we need T = 3
inverse shuffles until every card has a different string. The time T taken by our stopping
rule for inverse shuffles can actually be related to that of the birthday paradox! We will
put two cards in the same ”box” if they have the same k -long string. There are K = 2k
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boxes(1 for each possible string of 0s and 1s, we use 2k in place of K in the birthday
paradox formula). We want the probability that there is more than one card, so we have

Prob[T > k] = 1−
n−1∏
i=1

(
1− i

2k

)
�

So for n = 52 cards, our upper bound from 5.1 gives us d(12) ≤ 0.28 should be ”random
enough”.

The graph above gives us a good
idea of what is called the cutoff phenomena. While we would expect d(k) to decrease expo-
nentially, it instead suddenly cuts off at about k = 5! It has been found that 7 is a good
stopping point, though the proof is beyond the scope of the paper. However, let us track the
bottom card in the deck as we riffle shuffle. Say it’s the 9 of hearts. To riffle shuffle, we split
the deck into 2 parts. The 9 ♥ is on the bottom of one of the half-decks because it was on
the bottom of the main deck. Every time we shuffle, the 9 ♥ has a 1

2
chance of staying on

the bottom, because the bottom card of the big deck has a 1
2

chance of coming from each of
the two smaller decks.
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