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Abstract. In this paper, we present a few proofs of the Quadratic Reciprocity Law that
are not particularly well known. We also use Quadratic Reciprocity to see which primes can
be written in the form x2+ny2. We introduce the Jacobi Symbol and Quadratic Reciprocity
Law for Jacobi Symbol (or simply ”Jacobi Reciprocity Law”). We also explore other related
ideas such as Modular Functions and Hensel’s Lemma.

1. Introduction

Quadratic Reciprocity is one of the most important and powerful theorems in elementary
number theory. The law was first formulated, but not proved by Euler. In 1785, Legendre
discovered it independently of Euler and partially proved it. The first complete proof was
given by Gauss in 1796 in Disquisitiones Arithmeticae, a book that laid foundations of
modern number theory. Later in life, Gauss discovered 7 other proofs.

2. Quadratic Residues

In this section we introduce the basic definitions and theorems which we will use through-
out the rest of the paper.

Definition 2.1. For a ∈ Z, we say a is a quadratic residue (mod p) is there exists some x
such that x2 ≡ a (mod p). Otherwise we say a is a quadratic non-residue (mod p).

Fact 2.2. Exactly half of the linear nonzero residues (mod p) are quadratic residues.

Now we state the following lemma:

Lemma 2.3. Let p, be an odd prime, then p | x2 + y2 with x and y relatively prime if and
only if (−1) is a quadratic residue (mod p).

Proof. Since x and y are relatively prime, y has a multiplicative inverse modulo p. So
x2 + y2 ≡ 0 (mod p) if and only if (xy−1)2 ≡ −1 (mod p). �

Definition 2.4. We define the Legendre Symbol as follows:(
a

p

)
=


0 if p | a
1 if p is a quadratic residue (mod p) and p - a
−1 if p is a non-quadratic residue (mod p) and p - a

Now we present a useful theorem as follows:

Theorem 2.5 (Euler’s Criterion). Let p be an odd prime and a be any integer. Then we
have the following: (

a

p

)
≡ a

p−1
2 (mod p)
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Proof. We first recall Fact 2.2.
By Fermat’s Little Theorem, we have

a
p−1
2 ≡ ±1 (mod p).

If a is a quadratic residue modulo p, then x2 ≡ a (mod p) for some integer x. Then we have

a
p−1
2 ≡ xp−1 ≡ 1 (mod p).

Thus it suffices to prove that for non-quadratic residues, a
p−1
2 ≡ −1 (mod p). Now let’s

consider the equation x
p−1
2 = 1 in Zp. It has at most p−1

2
roots by the Fundamental Theorem

of Algebra. But we already know that the quadratic residues modulo p are roots of this

equation. So there is no other root, meaning that for any quadratic non-residue a, a
p−1
2 6≡ 1

(mod p). Thus we must have a
p−1
2 ≡ −1 (mod p). �

Corollary 2.6. For an odd prime p, we have(
−1

p

)
= (−1)

p−1
2

Corollary 2.7. For an odd prime p and a, b ∈ Z,(
ab

p

)
=

(
a

p

)(
b

p

)
.

Theorem 2.8 (Gauss Lemma for Quadratic Reciprocity). Take an a ∈ Z not divisible by an
odd prime p. Let S = {1a, 2a, . . . , p−1

2
a} and reduce the elements of S (mod p). If k denotes

the number of elements of S whose residue is at least p+1
2

, then(
a

p

)
= (−1)k.

Proof. Let a1, . . . , aj be the residue of set S less than p
2

and b1, . . . , bk be the residue of set

S more than p
2
. Thus j + k = p−1

2
.

Now we prove the following claim:

Claim 2.9.
{

1, 2, . . . , p−1
2

}
= {p− b1, . . . , p− bk, a1, . . . , aj}.

We prove the claim as follows:
The ai’s are contained in

{
1, 2, . . . , p−1

2

}
since the ai’s are less than p

2
. What about the

p− bi’s?
We have that bi >

p
2

=⇒ p− bi < p
2
. So we have p− bi ≤ p−1

2
. This shows that the p− bi’s

are contained in
{

1, 2, . . . , p−1
2

}
as well.

Since there are p−1
2

elements in
{

1, 2, . . . , p−1
2

}
and j + k = p−1

2
, it suffices to prove that the

ai’s and p− bi’s are distinct.
Each ai can be written in the form ra where 1 ≤ r ≤ p−1

2
. So if ra ≡ sa (mod p), then

p | (r − s)a which is impossible when r, s are distinct.
A similar argument shows that the bi’s are distinct, and hence the p− bi’s are too.
Could ai = p − bj? If this is possible, then p − ra ≡ sa (mod p) =⇒ p | (r + s)a which
is impossible since 2 ≤ r + s ≤ p − 1. This completes the proof that

{
1, 2, . . . , p−1

2

}
=
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{p− b1, . . . , p− bk, a1, . . . , aj}. Since the two sets are the same, the product must be the
same as well:

k∏
i=1

p− bi
j∏
i=1

ai ≡
(
p− 1

2

)
! (mod p).

Since p− bi ≡ −bi (mod p), we get

(−1)k
k∏
i=1

bi

j∏
i=1

ai ≡
(
p− 1

2

)
! (mod p).

But notice that the ai’s and bi’s are the the residues of the numbers a, 2a, . . . , p−1
2

, so we get
the following:

(−1)ka · 2a · 3a · · · p− 1

2
a ≡

(
p− 1

2

)
! (mod p).

=⇒ (−1)ka
p−1
2

(
p− 1

2

)
! ≡

(
p− 1

2

)
! (mod p).

Since p and p−1
2

are relatively prime,

(−1)ka
p−1
2 ≡ 1 (mod p).

=⇒ (−1)k
(
a

p

)
≡ 1 (mod p)

=⇒
(
a

p

)
≡ (−1)k

�

Proposition 2.10. For an odd prime p,(
2

p

)
= (−1)

p2−1
8

Proof. We apply Gauss Lemma (Theorem 2.7) to the set S =
{

1, 2, . . . , p−1
2

}
. Then

{2s : s ∈ S} = {2, 4, . . . , p− 1}

and (
2

p

)
= (−1)k

where k denotes the number of residue of the set {2, 4, . . . , p−1} at least p+1
2

. Now p = 8x+y
for some x and y ∈ {1, 3, 5, 7}. Considering each case, we see that the number of residues in
{2, 4, . . . , p−1} more than p

2
is even when p ≡ 1, 7 (mod 8) and odd when p ≡ 3, 5 (mod 8).

Note that p2−1
8

is even when p ≡ ±1 (mod 8) and odd otherwise. So thus(
2

p

)
= (−1)

p2−1
8

and we are done. �
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Theorem 2.11 (Eisenstein’s Lemma). Let p an odd prime and q ∈ Z such that q is coprime
to p. Consider the residue classes r1, r2, . . . , r p−1

2
of the set{

a, 2a, . . . ,
p− 1

2
a

}
.

Then (
q

p

)
= (−1)

∑ p−1
2

r=1 ri .

Proof. Consider the list of numbers (−1)r1r1, (−1)r2r2, . . . , (−1)
r p−1

2 r p−1
2

. We claim that this

list coincides with the set {2, 4, . . . , p− 1}. First, let us observe that each such residue class
is represented by an even number. Indeed, if ri is even, then (−1)riri is also even. If ri is
odd, then (−1)riri is a negative and since p is odd, it is also represented by an even residue
class.
Second, let us observe that the (−1)riri are all distinct. To prove this, suppose for the sake
of contradiction,

(−1)riri = (−1)rjrj

for some distinct integers i and j. Equivalently

qa ≡ ±qa′ (mod p)

where a and a′ are elements of the set {2, 4, . . . , p− 1}. Since q is relatively prime to p, we
conclude that

a ≡ a′ (mod p),

or equivalently a± a′ ≡ 0 (mod p). Since a and a′ are both distinct even numbers less than
p − 1, the sum and difference are both even numbers strictly less than 2p. Thus it follows
that a 6= a′.
Now by the definition of ri, we see that

q
p−1
2

p−1
2∏
i=1

2i ≡ ri

p−1
2∏
i=1

(mod p).

On the other hand,
p−1
2∏
i=1

2i ≡

p−1
2∏
i=1

(−1)riri ≡ (−1)
∑ p−1

2
r=1 ri

p−1
2∏
i=1

ri (mod p).

Plugging in, we get

q
p−1
2 ≡ (−1)

∑ p−1
2

r=1 ri (mod p).

Now Euler’s Criterion tells us that(
q

p

)
≡ q

p−1
2 (mod p).

So we conclude (
q

p

)
≡ (−1)

∑ p−1
2

r=1 ri (mod p).

�
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We can extend Theorem 2.10 further and prove that(
q

p

)
= (−1)

∑ p−1
2

r=1 b
2iq
p
c.

as follows:
By the division algorithm we can write 2iq = mip+ ri for suitable integers mi. Therefore,

p−1
2∑
i=1

2iq =

p−1
2∑
i=1

mip+ ri = p

 p−1
2∑
i=1

mi

+ ri

In fact, mi is precisely
[
2iq
p

]
, where the square brackets denotes the greatest integer function.

Since we are interested in the sign (−1)
∑2−1
i=1 ri, we only care about the parity of the expression

in the exponent. since the integers qa are all even, it follows that

(−1)
∑p−1
i=1 ri = (−1)

∑p−1
i=1

[
2iq

p

]
and we may conclude that (

q

p

)
= (−1)

∑p−1
i=1 [ 2iqp ].

3. Quadratic Reciprocity

Here, we introduce and prove the main theorem of the paper.

Theorem 3.1 (Law of Quadratic Reciprocity). Let p and q be distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

We present four proofs as follows:

First Proof. Consider now the box in the x − y -plane with vertices A = (0, 0), (0, q), (p, 0)
and B = (q, p) Look at the lattice points inside If we draw the line through (0,0) and (q, p),
it has slope q

p
. Since p and q are relatively prime, this line does not pass through any points

with integer coordinates. Moreover, the box has (p− 1)× (q− 1) points on the interior with
integer coordinates. since p and q are both odd, that means there are an even number of

lattice points in the interior of the box. since we are interested in the sign (−1)
∑p−1
i=1

[
2iq
p

]
, it

suffices for us to understand the parity of the expression
∑p−1

i=1

[
2iq
p

]
. The expression

[
2iq
p

]
is precisely the number of lattice points below the line with slope q

p
with even integer x

-coordinate 2i (these are called abscissas). Now, we make various observations about this
number of lattice points. 1. The number of lattice points inside the box above the line AB
is equal to the number of lattice points below the line. 2. since q − 1 is even, the number
of lattice points on each vertical line on the interior of the box is even, and thus the parity
of the number of points with a given x -coordinate above AB is equal to the parity of the
number of points AB. 3. Given an even x -coordinate a > p

2
. The number of lattice points

with x -coordinate a above the line AB coincides with the number of lattice points with x
-coordinate p− a below the line AB. Putting these three things together, observe that the
parity of the number of lattice points with even x -coordinate below the line AB is therefore
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the same as the parity of the number of points lying on the interior of the triangle with
coordinates A,C =

(
p
2
, 0
)

and D =
(
p
2
, q
2

)
. In a formula,

p−1
2∑
i=1

[
2iq

p

]
≡ µ (mod 2)

where µ is the number of lattice points inside the triangle ACD. Reversing the roles of p
and q, one similarly concludes that

q−1
2∑
i=1

[
2ip

q

]
≡ ν (mod 2)

where ν is the number of lattice points inside the triangle AED where E =
(
0, q

2

)
The result

of the previous section implies that:(
q

p

)(
p

q

)
= (−1)

∑p−1
i=1 [ 2iqp ](−1)

∑q−1
i=1 [ 2ipq ]

The arguments above show that the sign on the right is equivalent to

(−1)µ+ν

However, the total number of lattice points in the rectangle AECD is precisely p−1
2

q−1
2
, and

therefore,

(−1)µ+ν = (−1)
(p−1)(q−1)

4 .

So we get (
q

p

)(
p

q

)
= (−1)

(p−1)(q−1)
4

as desired. �

Second Proof. 1. Assume that p and q have their usual meaning and let G denote the series

(3.1) G = x− xg + xg
2 ∓ . . .− xgp−2

where g is a primitive root modulo p. Then it follows from properties of binomial coefficients

that Gq −
(
x− xg + xg

2 ∓ . . .− xgp−2
)q
≡ 0 mod q, or, since q is odd that

(3.2) Gq −Gq ≡ 0 (mod q), where Gq = xq − xqg + xqg
2 ± . . .− xqgp−2

If moreover q ≡ gµ (mod p), then the system of equations

q = gµ + f1p, qg = gµ+1 + f2p, . . . , qgp−2 = gµ+p−2 + f3p

implies

(3.3) xqg
λ − xqgµ+λ = (1− xp) f(x)

where f(x) is a polynomial in x. Thus we find

(3.4) Gq −
{
xg

µ − xgµ+1 ± . . .± xgµ+p−2
}

= (1− xp)W

where W is also a polynomial in x. The exponents of the p− 1 terms inside the brackets are
just the integers 1, 2, . . . , p−1 since g is a primitive root modulo p. since the signs alternate,
we see that xg

µ − xgµ+1 ± . . . = ±G. The sign of G is that of −(−1)p−µx, and since p is odd
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we conclude that ±G = (−1)µG From q ≡ gµ (mod p) we then find q
p−1
2 ≡

(
g
p−1
2

)µ
≡
(
q
p

)
(mod p), and since g

p−1
2 ≡ −1 (mod p), this implies

(−1)µ =

(
q

p

)
and

(3.5) Gq −
(
q

p

)
G = (1− xp)W

2. Now consider the system of identities

+xG− x2 + xg+1 − xg2+1 + . . .+ xg
p−2+1 = 0,

−xgG− x2g + xg
2+g − xg3+g + . . .+ xg

p−1+g =
(
xg

p−1 − 1
)
,

+

xp−2G− x2gp−2

+ xg
p−1+gp−2

+ . . .+ xg
2p−4+gp−2

=

xg
p−2+1

{
xg

p−1−1 − 1 −
(
xg

p−1 − 1
)
− . . .

}
.

Adding these equations gives

(3.6) Ω = G2 − f
(
xg

0+1
)

+ f
(
xg+1

)
∓ . . .+ f

(
xg

p−2+1
)

where Ω denotes the sum of the expressions on the right-hand side of the above system of
equations and where we have set f

(
xλ
)

= 1 + xλ + xλg + . . .+ xλg
p−2

. It is easily seen that

Ω is divisible by 1− xp, hence by 1−xp
1−x ; on the other hand f

(
xλ
)

is, because g is a primitive

root modulo p, divisible by 1− xλp, hence by 1−xλp
1−x . Thus f

(
xλ
)

will be divisible by 1−xp
1−x if

1− xλp

1− x
≡ 0 (mod

)

1− xp
1− x

For a proof we have to distinguish two cases. (I) λ and p are coprime. Then yλ = hp+ 1 for
integers y and h, hence

1− xλp

1− x
:

1− xp

1− x
=

1− xλp

1− x
· 1− xyλ

1− xλ
− x1− xλp

1− xλ
· 1− xhp

1− xp

and this implies that f
(
xλ
)

is divisible by 1−xp
1−x . (II) λ and p are not coprime. Then

f
(
xλ
)
− p = xλ

{
(xg − 1) +

(
xg

2 − 1
)

+ . . .+
(
xg

p−2 − 1
)}

,

and this immediately implies that f
(
xλ
)
− p is divisible by 1−xp

1−x Collecting everything and

recalling that g0 + 1, g + 1, . . . , gp−2 + 1 represent the numbers 2, 3, . . . , p in some order, we
can deduce from (3.6)

(3.7) Ω = G2 − (−1)
p−1
2 f

(
xg

p−1
2

+1
)
≡ 0 (mod

)

1− xp
1− x

or, if Z denotes a polynomial in x,

(3.8) G2 − (−1)
p−1
2 p =

1− xp

1− x
Z
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From (3.8) we immediately deduce

(3.9) Gq−1 − (−1)
p−1
2

q−1
2 p

q−1
2 =

1− xp

1− x
Y

3. Using Eqs. (3.3),(3.4),(3.8) and (3.9), the reciprocity law can be proved easily. First we
observe that (3.3) and (3.4) imply

qGX = Gq+1 −G
{

(1− xp)W +

(
q

p

)
G

}
where X denotes a polynomial in x defined by (3.2) as

Gq −Gq = qX

Moreover, from (3.9) we get

qGX =

{
(−1)

p−1
2

q−1
2 p

q−1
2 +

1− xp

1− x
Y

}
G2 −G (1− xp)W −

(
q

p

)
G2

or, using (3.8) we get,

(3.10)

qGX =(−1)
p−1
2 p

{
(−1)

p−1
2

q−1
2 p

q−1
2 −

(
q

p

)}
+

1− xp

1− x

{
Z

(
(−1)

p−1
2 q

p−1
2 −

(
q

p

))
+ Y G2 −WG(1− x)

}
According to (3.1), G has degree p − 1. If we put GX = 1−xp

1−x U + T, where U and T are
polynomials in x, then T will be a polynomial of degree less than p − 1. Plugging the last
equation into (3.10) we get

(3.11)

qT − (−1)
p−1
2 p
{

(−1)
p−1
2

q−1
2 p

q−1
2 −

(
q
p

)}
= 1−xp

1−x

{
Z
[
(−1)

p−1
2
q−12p

q−1
2 −

(
q
p

)]
+Y G2 −WG(1− x)− qU}

where the degree of the left-hand side is less than p− 1. Now Z, Y,W are polynomials in x,
hence the degree of the right-hand side is bigger than p− 1.
Thus the equation above can hold only if both sides vanish. Thus we find

qT = (−1)
p−1
2 p

{
(−1)

p−1
2

q−1
2 p

q−1
2 −

(
q

p

)}
or

(−1)
p−1
2

q−1
2 p

q−1
2 −

(
q

p

)
≡ 0 (mod q)

and this is exactly what we wanted to prove. �

Third Proof. Let p and q > p be two distinct positive odd primes. For 2n + 1 = 1, 3, 5 . . .
4q − 2, choose m in such a way that

(3.12) (2n+ 1)p− 2mq = r

where r is an odd integer between q and −q. Let µ denote the number of negative values
of r; then clearly

(
p
q

)
= (−1)µ. Among the residues in (3.12), we single out those that lie
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between +p and −p. As a condition for this he gets the equation (2n′ + 1) q − 2m′p = r, or,
by adding and subtracting pq in (3.12):

(3.13) (p− 2m)q − (q − 2m− 1)p = r.

This implies that r is between +p and −p in (3.12) for p− 2m = 1, 3, . . . , p− 2 that is, for
m = 1, 2, . . . , p−1

2
Now replace µ by v and switch the roles of p and q; then

(
q
p

)
= (−1)v

Moreover it is seen that v can be derived from (3.13) in the same way as µ from (3.12).

Thus
(
p
q

)
and

(
q
p

)
will have the same or the opposite sign according as the number of residues

r between −p and −q is even or odd. For such residues −q < (2n+ 1)p− 2mq < −p we get
by putting m = n− k and p = q − 2a:

(3.14) 2m+ 1 <
k + 1

α
q < 2n+ 2.

Thus the number of these negative residues r is equal to the number of fractions q
α

2q
α
, . . . , α−1

α
·

q for which the greatest integer contained in them is odd. Now the sum of the fractions with
equal distance to the beginning and the end is q, and in particular odd. Thus the sum of
the greatest integers belonging to these fractions is even, thus they are either both odd or
both even.
1. If α ≡ 1 (mod 2), then

(
p
q

)
=
(
q
p

)
.

2. If α ≡ 0 mod 2, then we have to take the middle term in the series of fractions into
account.

• For q = 4n+ 1 we find b( q
1
c) = n, hence

(
p
q

)
=
(
q
p

)
.

• For q = 4n+ 3, on the other hand, we get b( q
2
c) = 2n+ 1, hence

(
p
q

)
= −

(
q
p

)
.

Collecting these two cases we see that(
p

q

)(
q

p

)
= (−1)

(α−1)(q−1)
2 .

Now p = q − 2α shows

(α− 1)
q − 1

2
=
q − 1

2

(
p− 1

2
− q − 1

2
− 1

)
=
q − 1

2

q − 1

2
− q − 1

2
· q − 3

2

≡ q − 1

2

q − 1

2
(mod 2)

which is what we wanted to prove. �

Fourth Proof. Let p be a positive odd prime and ρ a primitive root of xp = 1. Then

(3.15)
xp − 1

x− 1
=
(
x− ρ2

) (
x− ρ4

)
· · ·
(
x− ρ2(p−1)

)
= 1 + x+ x2 + . . .+ xp−1

and plugging in x = 1 yields

p = (−1)
p−1
2

(
ρ− ρ−1

)2 · · ·(ρ p−1
2 − ρ−

p−1
2

)2
.

Raising this equation to the q−1
2

th
power we get

(3.16) p
q−1
2 = (−1)

p−1
2
· q−1

2

(p−1)/2∏
α=1

ραq − ρ−αq

ρα − ρ−α
≡
(
p

q

)
(mod q)
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where q denotes a positive odd prime distinct from p. The individual factors of
∏(p−1)/2

α=1
ραq−ρ−αq
ρα−ρ−α

are positive or negative according as αq is congruent to a positive or negative minimal residue
modulo p. Applying Gauss’s Lemma to (3.16) then gives(

p

q

)
≡ (−1)

p−1
2
· q−1

2

(
q

p

)
as desired. �

4. Primes as a Sum of Squares

Our main goal in this section is to answer the following question:
Which primes can be written in the form x2 + ny2 where x, y ∈ Z and n = 1, 2, 3?

In particular, we want to prove the following theorems of Fermat for odd primes p:

p = x2 + y2, x, y ∈ Z ⇔ p ≡ 1 (mod 4)
p = x2 + 2y2, x, y ∈ Z ⇔ p ≡ 1, 3 (mod 8)
p = x2 + 3y2, x, y ∈ Z ⇔ p = 3 or p ≡ 1 (mod 3).

Lemma 4.1. Let p be a prime and n be an integer not dividing n. Then there are relatively
prime integers x and y such that p | x2 + ny2 if and only if

(−n
p

)
= 1.

Proof. Suppose that p divides such a number x2+ny2. Then x2 ≡ −ny2 (mod p) since x and
y are relatively prime, it follows that p - y. The integers modulo p form a field, so that yb ≡ 1
(mod p) for some b. Multiplying our congruence by b2, we see that (xb)2 ≡ −n (mod p),
which implies that

(−n
p

)
= 1. The other direction is trivial, and the lemma is proved. �

Thus we want to find the congruence conditions on p that imply that
(−n
p

)
= 1. We see

that the way to unify the congruence conditions is to work modulo 4n and look at primes in
certain ranges. Working with n = 1, 2, 3, we get the following:(

−1

p

)
= 1 ⇐⇒ p ≡ 1 (mod 4)(

−2

p

)
= 1 ⇐⇒ p ≡ 1, 3 (mod 8)(

−3

p

)
= 1 ⇐⇒ p ≡ 1 (mod 3).

The key problem here is to find the ±’s. For example, 11 ≡ −9 (mod 20) and − 3 ≡ 25
(mod 28). So for n = −3,−5,−7, we get the following:(

3

p

)
= 1 ⇐⇒ p ≡ ±1 (mod 12)(

5

p

)
= 1 ⇐⇒ p ≡ ±1,±9 (mod 20)(

7

p

)
= 1 ⇐⇒ p ≡ ±1,±9,±25 (mod 28).

Notice that all these numbers are perfect squares! But before we get too excited, let’s try
another case: (

6

p

)
= 1 ⇐⇒ p ≡ ±1,±5 (mod 24).
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Similarly, 10 and 14 don’t work either. So why does it work for 3, 5, 7 but not 6, 10, 14. The
obvious difference is that the former are prime. From this we get the following conjecture:

Conjecture 4.2. If p and q are distinct odd primes, then(
q

p

)
= 1 ⇐⇒ p ≡ ±β2for some odd β.

Theorem 4.3. Conjecture 4.2 is equivalent to the Law of Quadratic Reciprocity.

Proof. Let p and q be distinct odd primes, and set p∗ = (−1)(p−1)/2p. We have that quadratic
reciprocity is equivalent to (

q

p

)
=

(
p∗

q

)
since each side equals ±1, it follows that quadratic reciprocity can be written as the equiv-
alence (

q

p

)
= 1⇔

(
p∗

q

)
= 1

and comparing this to Conjecture 4.2, it thus suffices to show

(4.1) p ≡ ±β2 (mod 4)q ⇔
(
p∗

q

)
= 1.

Note that β2 ≡ 1 (mod 4) since β is odd. Thus the ± sign in (4.1) must be (−1)(p−1)/2, and
we then have

p ≡ ±β2 (mod 4)q ⇔ p ≡ (−1)(p−1)/2β2 (mod 4)q

⇔ p∗ ≡ β2 (mod 4)q.

Now, to prove (4.1), suppose that p∗ ≡ β2 (mod 4)q. This implies p∗ ≡ β2 (mod q) so that
(p∗/q) = 1 follows immediately. Conversely, if (p∗/q) = 1, then p∗ ≡ α2 (mod q) for some α.
Letting β = α or α+q, depending on whether α is odd or even, we obtain p∗ ≡ β2 (mod 4)q,
and the theorem is proved. �

We state the general case for x2 + ny2 where n = 1, 2, 3 as the following theorem.

Theorem 4.4. Let p be an odd prime a2 +nb2 where n = 1, 2, 3 and a, b are relatively prime
integers. Then p can be written in the form x2 + ny2.

Proof. We first state the following crucial lemma:

Lemma 4.5. Let q = x2 + ny2 where n a positive integer, and suppose that q divides a
number N = a2 + nb2, where a and b are relatively prime. If either q is prime, or q = 4 and
n = 3, then N/q = c2 + nd2, where c and d are relatively prime.

Proof. Let us first consider the case where q is prime. Since q divides both x2N = x2 (a2 + nb2)
and a2q = a2 (x2 + ny2) , it divides their difference

x2
(
a2 + nb2

)
− a2

(
x2 + ny2

)
= n

(
x2b2 − a2y2

)
= n(xb− ay)(xb+ ay).

Since q is prime, it must divide one of these factors.

If q | n, then q = n since q = x2 + ny2. Hence n | N = a2 + nb2, so that n | a, i.e. a = nd.
Then N = n2d2 + nb2, which implies N/q = b2 + nd2, as desired.



12 EKAM KAUR

If q | xb− ay or q | xb+ ay, we can assume that the former holds by changing the sign of
y. Then xb− ay = dq = d (x2 + ny2) . This implies that

(4.2) xb− dx2 = ay + dny2 = y(a+ ndy)

from which we conclude that x | y(a+ ndy). Since x and y are relatively prime (q is prime),
we must have x | a+ ndy, i.e.,

(4.3) a+ ndy = cx

so that a = cx− ndy. Substituting (4.3) into (4.2), we obtain

x(b− dx) = y(cx).

which implies that b = dx+ cy.
However, we also have the famous identity(

c2 + nb2
) (
x2 + ny2

)
= (cx− ndy)2 + n(dx+ cy)2.

Using the above formulas for a and b, this becomes(
c2 + nd2

)
q = a2 + nb2 = N,

and we get N
q

= c2 + nd2 as desired.

Since a and b are relatively prime, we get that c and d are also relatively prime.
It remains to consider the case n = 3 and q = 4. Here, we have 4 | a2 + 3b2, so that a

and b have the same parity. since a and b are relatively prime, they must be odd. since
4 = 12 + 3 · 12, the argument for the prime case (with x = y = 1 ) would work, provided
that 4 | b − a or 4 | b + a. But the latter holds for any pair of odd numbers, which proves
the lemma in this case. �

To complete the proof of Theorem 2.1, consider an odd prime p dividing a2 + nb2 where
a and b are relatively prime. Assume that p itself is not of this form. We will show that
there is an odd prime q < p with exactly the same properties. We would then be done by
Fermat’s principle of infinite descent: applying the same argument to q would give us q′ < q,
and continuing we would get an infinite decreasing sequence p > q > q′ > · · · of positive
integers, which contradicts the well-ordering property.

To produce q, we work with a2 + nb2. It is divisible by p, and remains so if we replace
a and b by a − kp and b − `p respectively. Furthermore, we may choose k and ` so that
|a− kp| < p

2
and |b− `p| < p

2
because p is odd. Thus we may assume that p | a2 + nb2 where

|a| < p
2

and |b| < p
2
. Since n ≤ 3, it follows that a2 + nb2 < (p

2
)2 + 3(p

2
)2 = p2. Thus a2 + nb2

can be written as

(4.4) a2 + nb2 = pq1 · · · qr
where the primes qi all satisfy qi < p. We claim that one of these qi’s is odd and not of the
form x2 + ny2.

To prove this, assume not for the sake of contradiction. Then all of the odd qi ’s can be
written as x2 + ny2, so that by repeatedly applying Lemma 4.5 we can eliminate all of the
odd qi’s from (4.4). This leaves us with

a2 + nb2 = 2ap

If n = 1 or 2, we can also apply Lemma 4.5 to 2 = 12 + 12 = 02 + 2 ·12 to eliminate factors of
2, showing that p = a2 + nb2, a contradiction. If n = 3, the case q = 4 of Lemma 4.5 shows
that we can reduce to either p = a2 + 3b2 or 2p = a2 + 3b2. It remains to show that the latter
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case cannot occur. But p | a2 + 3b2 implies
(−3
p

)
= 1, which by quadratic reciprocity means

p ≡ 1 mod 3, so that 2p ≡ 2 (mod 3). Yet 2p = a2 + 3b2 implies 2p ≡ a2 ≡ 1 (mod 3), and
thus we have a contradiction.

This completes the proof of Theorem 4.4. �

This finishes our proof of the Fermat’s three theorems.

5. Modular Divisor Functions

Definition 5.1. We define τ(a, p) the number of ordered pairs of integers (x, y) such that

0 < x <
1

2
p, 0 < y <

1

2
p, xy ≡ a (mod p).

Proposition 5.2. If p is an odd prime and a is an integer not divisible by p, then a is a
quadratic residue (mod p) if and only if τ(a, p) is odd.

Proof. If (x, y) is a pair counting towards τ(a, p), then (y, x) is also a pair counting towards
τ(a, p). It follows that there is an even number of pairs (x, y) with x 6= y counting towards
τ(a, p). If a is a quadratic residue modulo p, so that a ≡ x20 mod p for some integer x0, then

x2 ≡ a mod p⇐⇒ x ≡ ±x0 mod p

so there is a unique integer x with 0 < x < 1
2
p such that x2 ≡ a mod p, and it follows that

τ(a, p) is odd. If a is not a quadratic residue modulo p then there are no integers x such
that x2 ≡ a mod p, and it follows that τ(a, p) is even. This completes the proof. �

Lemma 5.3. Let p and q be distinct odd primes and

p̃ =
p− 1

2
, q̃ =

q − 1

2
.

Then
(
p
q

)
=
(
q
p

)
if and only if spsq is even.

Proof. Given an integer n with |n| < 1
2
pq, we define a pair of integers (ρ(n), ρ′(n)) as follows:

if n is divisible by p then ρ(n) = 0; if n is not divisible by p then ρ(n) is the unique integer
such that

0 < |ρ(n)| < 1

2
p, nρ(n) ≡ q mod p

if n is divisible by q then ρ′(n) = 0; if n is not divisible by q then ρ′(n) is the unique integer
such that

0 < |ρ′(n)| < 1

2
q, nρ′(n) ≡ p mod q.

For distinct integers n1 and n2 in the interval
(
−1

2
pq, 1

2
pq
)

we have n1 ≡ n2 mod p or n1 ≡ n2

mod q, from which it follows that ρ (n1) 6= ρ (n2) or ρ′ (n1) 6= ρ′ (n2) . The pairs (ρ(n), ρ′(n))
therefore take distinct values, so they take each of the pq possible values exactly once. In
particular, let S be the set of integers n with |n| < 1

2
pq such that ρ(n)ρ′(n) < 0; then S has

2p̃q̃ members. Clearly n ∈ S if and only if −n ∈ S, so half of the members of S are positive;
thus there are p̃q̃ integers n with 0 < n < 1

2
pq such that ρ(n)ρ′(n) < 0 Now let T be the set

of integers n with 0 < n < 1
2
pq such that ρ(n) > 0. Let u be the number of integers n in T

such that ρ′(n) = 0, let v be the number such that ρ′(n) > 0, and let w be the number such
that ρ′(n) < 0, so that T has u + v + w members all together. We will show that the value

of u + v + w determines the value of
(
q
p

)
. Indeed the members n of T which are less than
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1
2
p correspond to the pairs (x, y) which count towards τ(q, p)( take x = n and y = ρ(n)),

so T has τ(q, p) members less than 1
2
p. On the other hand, the interval

(
1
2
p, 1

2
pq
)

has length

pq̃, so the equation ρ(n) = i has q̃ solutions with 1
2
p < n < 1

2
pq for each given integer i with

1 ≤ i ≤ p̃, and it follows that T has p̃q̃ members greater than 1
2
p. since T has u + v + w

members all together, this gives us

τ(q, p) + p̃q̃ = u+ v + w.

From Proposition 1 we see that
(
q
p

)
= 1 if and only if u+ v + w − p̃q̃ is odd Next we show

that u is odd. Indeed, u is the number of multiples n of q with 0 < n < 1
2
pq such that

ρ(n) > 0. These multiples correspond to the pairs (x, y) which count towards τ(1, p) (take
x = n/q and y = ρ(n)), so u = τ(1, p). since 1 is a quadratic residue modulo p, it follows

from Proposition 1 that u is odd. Therefore
(
q
p

)
= 1 if and only if v + w − p̃q̃ is even.

Analogously, let w′ be the number of integers n with 0 < n < 1
2
pq such that ρ(n) < 0 and

ρ′(n) > 0; then
(
p
q

)
= 1 if and only if v + w′ − p̃q̃ is even, and it follows that

(
q
p

)
=
(
p
q

)
if

and only if w + w′ is even. But w + w′ is the number of integers n with 0 < n < 1
2
pq such

that ρ(n)ρ′(n) < 0, so w+w′ = p̃q̃ as already observed. Therefore
(
q
p

)
=
(
p
q

)
if and only if

p̃q̃ is even. This completes the proof. �

Remark 5.4. Note that
(
a
p

)
= (−1)τ(a,p)−1.

We define Up as the set of nonzero integers such that |n| < 1
2
p and ρap as the permutation

of Up given by

iρap(i) ≡ a (mod p).

Proposition 5.5. Let a be an integer, and p be a prime. Then we have(
a

p

)
= (−1)

p−3
2 sgnρap

where sgn(σ) denotes the sign of permutation σ.

Proof. We see that Up has τ(a, p) positive members with positive images under ρap, so Up has
1
2
(p−1)−τ(a, p) positive members with negative images under ρap. Clearly ρap(−i) = −ρap(i) for

all i in Up, so the sign of ρap is (−1)[(p−1)/2]−τ(a,p). Writing sgn σ for the sign of a permutation
σ, we see that (

a

p

)
= (−1)

p−3
2 sgnρap

as desired. �

Let πap be the permutation of Up given by

πap(i) ≡ ai (mod p).

Proposition 5.6 (Zolotarev’s Lemma). Let a be an integer and p be a prime. Then we have(
a

p

)
= sgnπap
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Proof. Note that we have πap = ρ1p · ρap which implies sgnπap = sgnρ1p · sgnρap. We also have

sgn ρ1p = (−1)(p−3)/2 because 1 is a quadratic residue modulo p. So we get(
a

p

)
= sgnπap

as desired. �

Note that both Propositions 5.5 and 5.6. give the same information in different ways.

6. Composite Moduli

Our goal in this section is to generalize the Legendre Symbol and allowing composite
moduli.

We first state the Chinese Remainder Theorem.

Theorem 6.1 (Chinese Remainder Theorem). Let m1,m2, . . . ,mk be pairwise coprime in-
tegers and a1, a2, . . . , ak be arbitrary integers. Then the system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)
...

x ≡ ak (mod mk)

has a unique solution modulo M where M = m1m2 · · ·mk.

Let m and a be relatively prime integers where m is odd. We will prove a is a quadratic
residue modulo m if and only if a is a quadratic residue modulo p for every prime dividing
m. By Theorem 6.1, it suffices to to consider congruences modulo prime powers.

Theorem 6.2. Let R be a ring and f(x) =
∑n

i=0 aix
i be a polynomial with coefficients in

R. Then
f(x+ h) = f(x) + f ′(x)h+ r(x, h)h2

where r(x,h) is a polynomial in two variables x and h with coefficients in R.

Proof. This is just a standard calculation. Expanding f(x+h) by the binomial theorem, we
obtain

f(x+ h) =
n∑
i=0

ai(x+ h)i

=
n∑
i=0

ai

i∑
j=0

(
i
j

)
xi−jhj

=
n∑
j=0

n∑
i=j

(
i
j

)
aix

i−jhj

=
n∑
i=0

aix
i +

n∑
i=1

iaix
i−1h+

n∑
j=2

n∑
i=j

(
i
j

)
aix

i−jhj

= f(x) + f ′(x)h+ r(x, h)h2
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where

r(x, h) =
n∑
j=2

n∑
i=j

(
i
j

)
aix

i−jhj−2

is a polynomial in x and h with coefficients in R. �

Theorem 6.3 (Hensel’s Lemma). Let p be a prime and f(x) be a polynomial of degree n
and leading coefficient not divisible by p. If there exists an a such that

f(x1) ≡ 0 (mod p)

and

f ′(x1) 6≡ 0 (mod p),

then for every k ≥ 2, there exists an xk such that

f(xk) ≡ 0 (mod pk)

and

xk ≡ xk−1 (mod pk−1).

Proof. The proof is by induction on k. We begin by constructing x2 There exist integers
u1 and v1 such that f (x1) = u1p and f ′ (x1) = v1 6= 0 (modp). We shall prove that there
exists an integer y1 such that f (x1+ y1p) ≡ 0 (modp2) By Theorem 6.2, there exists a
polynomial r(x, h) with integer coefficients such that

f (x1 + y1p) = f (x1) + f ′ (x1) y1p+ r (x1, y1p) p
2

= u1p+ v1y1p+ r (x1, y1p) p
2

≡ u1p+ v1y1p
(
modp2

)
Therefore, there exists an integer y1 such that

f (x1 + y1p) ≡ 0
(
modp2

)
if and only if the linear congruence

v1y ≡ −u1 (modp)

is solvable. We see that this congruence does have a solution y1 because (v1, p) = 1. Let

x2 = x1 + y1p

Then

f (x2) ≡ 0 (modp) and x2 ≡ x1 (modp)

Let k ≥ 3, and assume that we have constructed integers x2, . . . , xk−1 such that

f (xi) ≡ 0
(
modpi

)
and xi ≡ xi−1

(
modpi−1

)
for i = 2, . . . , k − 1. There exists an integer uk−1 such that

f (xk−1) = uk−1p
k−1

Let f ′ (xk−1) = vk−1. since xk−1 ≡ x1 (modp), it follows that

vk−1 = f ′ (xk−1) ≡ f ′ (x1) 6≡ 0 (modp)
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Applying Theorem 6.2 with t = xk−1 and h = yk−1p
k−1, we obtain

f
(
xk−1 + yk−1p

k−1)
= f (xk−1) + f ′ (xk−1) yk−1p

k−1 + r
(
xk−1, yk−1p

k−1) y2k−1p2k−2
≡ uk−1p

k−1 + vk−1yk−1p
k−1 (

modpk
)

It follows that
f
(
xk−1 + yk−1p

k−1) ≡ 0
(
modpk

)
if and only if there exists an integer yk−1 such that

vk−1yk−1 ≡ −uk−1 (modp)

This last congruence is solvable, since (vk−1, p) = 1. �

Theorem 6.4. Let p be an odd prime and a be an integer not divisible by p. If
(
a
p

)
= 1, then(

a
pk

)
= 1 for every k ≥ 1.

Proof. Consider the polynomial f(x) = x2 − a and its derivative f ′(x) = 2x. If a is a
quadratic residue modulo p, then there exists an integer x1 such that x1 6= 0 (modp) and
x21 ≡ a (modp). Then f (x1) ≡ 0 (modp) and f ′ (x1) 6= 0 (modp). By Hensel’s lemma,
the polynomial congruence f(x) ≡ 0

(
modpk

)
is solvable for every k ≥ 1, and so a is a

quadratic residue modulo pk for every k ≥ 1. �

7. Quadratic Reciprocity Law for Jacobi Symbol

The Jacobi Symbol is a natural generalization of the Legendre Symbol where modulus is
composite (briefly explored in the last section).

Let n be an odd integer and k be relatively prime to n. We define(
k

n

)
=

t∏
i=1

(
k

pi

)ei
where n =

∏t
i=1 p

ei
i . However, note that

(
a
n

)
= 1 does not imply that a is a quadratic residue

modulo n.

Theorem 7.1. Let n be an odd positive integer and a ∈ Z be relatively prime to n. Then
if a is a quadratic residue modulo n, then

(
a
n

)
= 1. The converse does not hold if n is not

prime.

Proof. Suppose that a is a quadratic residue modulo n, i.e. the equation x2 ≡ a(modn) has
a solution. Let n = pe11 ×pe22 ×· · ·×pett be the prime factorization of n. Let mi = peii for each
i. By the Chinese remainder theorem, the equation x2 ≡ a (modmi) has a solution for each
i = 1, 2, · · · , t. it then follows that the equation x2 ≡ a (modpi) has a solution too for each

i = 1, 2, · · · , t. Hence the Legendre symbol
(
a
pi

)
= 1 for each i. It follows that the Jacobi

symbol
(
a
n

)
= 1. �

Lemma 7.2. Let a and b be odd positive integers. Then following two conditions hold
a−1
2
× b−1

2
≡ ab−1

2
(mod2)

a2−1
8
× b2−1

8
≡ (ab)2−1

8
(mod2)
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Proof. The lemma is established by the following derivation:

ab−1
2
−
[
a−1
2

+ b−1
2

]
= ab−a−b+1

2
= (a−1)(b−1)

2

(ab)2−1
8
−
[
a2−1
8

+ b2−1
8

]
= (ab)2−a2−b2+1

8
=

(a2−1)(b2−1)
8

Because both a and b are odd integers, the right-hand-side of both equations are even integers
and thus ≡ 0 (mod 2). �

Proposition 7.3. The Jacobi Symbol is multiplicative when the bottom argument is fixed,
namely,

(
ab

n

)
=

(
a

n

)(
b

n

)
.

Proof. This follows from the definition of the Jacobi Symbol and corresponding properties
of the Legendre Symbol. �

Proposition 7.4. The Jacobi Symbol is multiplicative when the upper argument is fixed,
namely,

(
a

mn

)
=

(
a

m

)(
a

n

)
.

Proof. This follows from the definition of the Jacobi Symbol and corresponding properties
of the Legendre Symbol. �

The Jacobi Reciprocity Law is a three-part statement:

Theorem 7.5 (Jacobi Reciprocity Law).

(1) 1.If a and b are odd relatively prime integers, then
(
a
b

)(
b
a

)
= (−1)

a−1
2

b−1
2 .

(2) 2.
(−1
n

)
= (−1)

n−1
2

(3) 3.
(
2
n

)
= (−1)

n2−1
8

Proof. For the first part,
let a = p1 × p2 × · · · × pw and b = q1 × q2 × · · · × qt be their prime factorizations. Note

that the primes pi are not necessarily distinct and the primes qi are not necessarily distinct.
However, pi 6= qj since a and b are relatively prime. Consider the following derivation of the
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product
(
a
b

) (
b
a

)
(
a

b

)(
b

a

)
=

t∏
i=1

(
a

qi

) w∏
j=1

(
b

pj

)

=
t∏
i=1

w∏
j=1

(
pj
qi

) w∏
j=1

t∏
i=1

(
qi
pj

)

=
t∏
i=1

w∏
j=1

(
pj
qi

) t∏
i=1

w∏
j=1

(
qi
pj

)

=
t∏
i=1

w∏
j=1

(
pj
qi

)(
qi
pj

)

=
t∏
i=1

w∏
j=1

(−1)
pj−1

2
·
qj−1

2

=(−1)E

where

E =
∑
i,j

[
pj − 1

2
× qi − 1

2

]
.

Theorem 7.5 is established after the quantity E is simplified as follows:∑
i,j

[
pj − 1

2
× qi − 1

2

]
=
∑
j

[∑
i

qi − 1

2

]
pj − 1

2

≡
∑
j

[
b− 1

2

]
pj − 1

2
Use Lemma 7.2

≡ b− 1

2

∑
j

pj − 1

2

≡ b− 1

2

a− 1

2
(mod 2) Use Lemma 7.2

as desired.
For the second part, the proof is by induction on the number of prime factors of n. If n is

a prime, then it is done. So we assume n = p1 × p2 (not necessarily distinct). Consider the
following derivation: (

−1

n

)
=

(
−1

p1

)(
−1

p2

)
= (−1)

p1−1
2 (−1)

p2−1
2

= (−1)
p1−1

2
+
p2−1

2

≡ (−1)
p1p2−1

2 Use Lemma 7.2

≡ (−1)(n−1)/2 (mod 2)
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It is a straightforward argument that whenever the property is true for n being a product of
k primes, the property is true for n being a product of k + 1 primes. Thus we are done.

For the third part, the proof is by induction on the number of prime factors of n. The
most important case is the one consisting of two prime factors.(

2

n

)
=

(
2

p1

)(
2

p2

)
= (−1)

p21−1

8 (−1)
p22−1

8

= (−1)
p21−1

8
+
p22−1

8

≡ (−1)
(p1p2)

2−1
8 Use Lemma 7.2

≡ (−1)
n2−1

8 (mod2)

With the 2-case established, it is straightforward to carry out the remainder of the induction
proof of this part.

�
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