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ABSTRACT

Inequalities find important uses in algebra and analysis, either to find extreme values of functions, or
to bound values that cannot be computed exactly. In this paper, we prove some basic inequalities like
the AM-GM and Cauchy-Schwarz, generalize Cauchy-Schwarz to integrals, and discuss the various
forms and applications of Jensen’s inequality.

1 Introduction

When we first learn about inequalities, the first thing we learn is that all perfect squares are nonnegative. This is known
as the trivial inequality, which many other inequalities can be reduced to.
Theorem 1.1 (Trivial Inequality). For any real number x, we have x2 ≥ 0.

Next, we look at two other well-known inequalities: the arithmetic mean-geometric mean inequality, and the discrete
form of the Cauchy-Schwarz inequality.
Theorem 1.2 (AM-GM inequality). If a1, a2, . . . , an are positive real numbers, then

n
√
a1a2 · · · an ≤

a1 + a2 + · · ·+ an
n

with equality if and only if all ai’s are equal.

We present Cauchy’s proof, using a technique known as forward-backward induction. Where normal induction shows
that k implies k + 1, forward-backward induction breaks the inductive step into two parts: showing that k implies 2k
and showing that k also implies k − 1.

Proof. Let P (n) represent the inequality in n variables, where we take both sides to the nth power:

a1a2 · · · an ≤
(
a1 + a2 + · · ·+ an

n

)n

.

Our base case is n = 2, for which

a1a2 ≤
(
a1 + a2

2

)2

⇐⇒ (a1 − a2)2 ≥ 0.

• Backward step: going from P (n) to P (n− 1): Let

A =

n−1∑
k=1

ak
n− 1

.

Then (
n−1∏
k=1

)
A

P (n)

≤

(∑n−1
k=1 ak +A

n

)n

=

(
(n− 1)A+A

n

)n

= An.

It follows that
n−1∏
k=1

ak ≤ An−1 =

(∑n−1
k=1 ak
n− 1

)
≤ An−1 =

(∑n−1
k=1 ak
n− 1

)n−1

.



• Forward step: going from P (n) to P (2n):
2n∏
k=1

ak =

(
n∏

k=1

ak

)(
2n∏

k=n+1

ak

)
P (n)

≤

(
n∑

k=1

ak
n

)n( 2n∑
k=n+1

ak
n

)n

P (2)

≤

(∑2n
k=1

ak

n

2

)2n

=

(∑2n
k=1 ak
2n

)2n

.

This completes the proof. Showing the equality case follows similarly. �

Remark 1.3. We can extend this to show that the harmonic mean is always less than or equal to the geometric mean, by
considering 1

a1
, 1
a2
, . . . , 1

an
.

Theorem 1.4 (Discrete Cauchy-Schwarz Inequality). If a1, a2, . . . an and b1, b2, . . . bn are real numbers, then(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
≥

(
n∑

i=1

aibi

)2

.

Remark 1.5. The discrete Cauchy-Schwarz inequality can also be stated in this alternate form: if 〈a, b〉 is the inner
product (dot product) of two vectors in Rn, then 〈a, b〉2 ≤ |a|2|b|2, with equality only if a and b are linearly dependent.

We present the following proof from the original Proofs from THE BOOK:

Proof. Consider the following function, which is quadratic in x:
|xa + b|2 = x2|a|2 + 2x〈a, b〉+ |b|2.

We trivially assume a 6= ~0 (that case is just the zero equality case). If a and b are linearly dependent then b = λa
and 〈a, b〉2 = |a|2|b|2. Otherwise, |xa + b|2 > 0 for all x. Since this is always positive, it has no real roots, so the
discriminant 4(〈a, b〉2 − |a|2|b|2) is negative. Dividing by 4 and rearranging finishes the proof. �

2 Integral Form of Cauchy-Schwarz

When we take a sum of infinitely many small rectangles under a curve, we get an integral. Similarly, extending the
discrete form of the Cauchy-Schwarz inequality to the case of n =∞, gives us the integral form.
Theorem 2.1 (Continuous Cauchy-Schwarz Inequality). Let f and g be functions for which integrals are defined, and
S be a space we can integrate over, such as an interval, union of intervals, etc. Then, we have

∫
S

|fg| ≤
(∫

S

|f |2
) 1

2
(∫

S

|g|2
) 1

2

.

Remark 2.2. The more formal measure-theoretic statement of the inequality is as follows:

Let f, g : S → C be measurable functions on a measure space S.

The proof is very similar to the discrete version:

Proof. For any real x, we have 0 ≤ (x|f |+ |g|)2.

Then, integrating over the space S, we have

0 ≤
∫
S

(x|f |+ |g|)2.

Expanding gives

x2
∫
S

|f |2 + 2x

∫
S

|f ||g|+
∫
S

|g|2

= Ax2 + 2Bx+ C,
where

A =

∫
S

|f |2;B =

∫
S

|f ||g|;C =

∫
S

|g|2.

By the same reasoning as in the discrete inequality, (2B)2 − 4AC must be nonpositive, thus B2 ≤ AC and hence the
result. The equality case follows similarly. �
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3 Jensen’s Inequality

The previous inequalities that we studied were all derived from the trivial inequality. Now, we look at Jensen’s inequality,
which is derived from convexity of functions.
Definition 3.1. A function f on an n-dimensional interval is convex if the line segment between any two points on the
graph of the function lies on or above the graph. More rigorously: Let f be a function on an interval S. Then, f is
convex if for any two points x, y ∈ S, and any 0 < t < 1, we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

We say f is strictly convex if the inequality is strict.

The definitions of concave and strictly concave functions follow from reversing the direction of the inequality.
Remark 3.2. When t = 1

2 , the inequality reduces to the well-known form

f

(
x+ y

2

)
≤ f(x) + f(y)

2
.

Convex functions also satisfy several useful properties. We will not prove any of them, but they will soon come into use:

• Convex functions are always continuous, but not always differentiable. The absolute value function is a
counterexample to differentiability.

• If a function f : S → R is twice differentiable over all of S, then f is convex if and only if f ′′(x) ≥ 0
throughout all of S.

• f(x+y
2 ) ≤ f(x)+f(y)

2 does not guarantee convexity, unless we know that f is also continuous over the entire
region.

With this, we can define Jensen’s inequality, which is essentially an n-dimensional generalization of the definition of
convexity.
Theorem 3.3 (Jensen’s inequality, general version). Let f : S → R be a convex function. Given x1, x2, . . . , xn ∈ S
and positive real numbers t1 . . . tn such that

∑
ti = 1, we have:

f(t1x1 + t2x2 + · · ·+ tnxn ≤ t1f(x1) + t2f(x2) + · · ·+ tnf(xn).

The inequality is reversed if f is concave.
Remark 3.4. If we let t1 = t2 = · · · = tn = 1

n , then the inequality becomes the simple form

f

(
x1 + x2 + · · ·+ xn

n

)
≤ f(x1) + f(x2) + · · ·+ f(xn)

n
.

Proof. We apply induction on n.

The base case is n = 2, which is trivial by the definition of convexity.

Assume the result holds for some integer n ≥ 2. Given x1, x2, . . . , xn, xn+1 ∈ S and t1, t2, . . . , tn, tn+1 such that∑
ti = 1, we can write

f

(
n+1∑
i=1

tixi

)
= f

(
tn+1xn+1 + (1− tn+1)

n∑
i=1

ti
1− tn+1

xi

)

≤ tn+1f(xn+1) + (1− tn+1)f

(
n∑

i=1

ti
1− tn+1

xi

)
.

Since
∑n

i=1
ti

(1−tn+1)
= 1, by the inductive hypothesis we have

f

(
n+1∑
i=1

tixi

)
≤ tn+1f(xn+1) + (1− tn+1)

n∑
i=1

ti
1− tn+1

f(xi) =

n+1∑
i=1

tif(xi).

�
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Similar to how the Cauchy-Schwarz inequality can be generalized to an integral form in infinite dimensions, Jensen’s
inequality can be generalized to an integral form with infinite number of terms in the sum. This lends itself to a
convenient application for probability functions. Unfortunately, we will not prove the inequality here as it is beyond the
scope of this paper.

Theorem 3.5 (Jensen’s inequality for integration on probability spaces). Let f : R→ R be a convex function, and S be
a measure space with total measure (length, area, etc.) equal to 1. Given an integrable function g : X → R, we have:

f

(∫
S

g

)
≤
∫
S

f ◦ g.

Here is a graphical explanation of the integral form of Jensen’s [5]:

Example (Standard combinatorics problem). Suppose we assign one of 10 colors to each of the integers
{1, 2, 3, . . . , 100}. At least how many unordered pairs {a, b} ⊂ {1, 2, 3, . . . , 100} must be the same color?

Let xi be the number of integers that get color i. We know that
∑
xi = 100. If color i has xi integers, then there are

xi(xi−1)
2 pairs of integers that both have color i. Thus, we want to minimize

∑(
xi

2

)
. Since the function

(
x
2

)
is convex,

by the equality case of Jensen’s, this is minimized when x1 = x2 = · · · = x10 = 10. Then there are
(
10
2

)
= 45 pairs of

each color, and 450 pairs total.

4 Proving other inequalities using Jensen

In this section, we give alternate proofs of AM-GM and Cauchy-Schwarz using Jensen’s inequality.

Alternate proof of Theorem 1.2:

Proof. Note that the function f(x) = lnx is concave. By Jensen’s inequality,

ln

(∑n
i=1 xi
n

)
≥

n∑
i=1

1

n
lnxi =

n∑
i=1

(
lnx

1/n
i

)
= ln

(
n∏

i=1

x
1/n
i

)
.

Taking the exponential of the far left and far right terms makes the lns go away, and we are left with the AM-GM
inequality. �

Alternate proof of Theorem 1.4

Proof. We let p1, p2, . . . , pn be such that pi > 0 for all i, and
∑n

i=1 pi = 1. Since f(x) = x2 is convex, by Jensen’s
we have (

n∑
i=1

pixi

)2

≤
n∑

i=1

pix
2
i .
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Suppose that none of the bi’s are zero. Letting xi = ai

bi
and pi =

b2i∑n
i=1 b2i

, we have(∑n
i=1 aibi∑n
i=1 b

2
i

)2

≤
∑n

i=1 a
2
i∑n

i=1 b
2
i

Clearing the denominator, we have (
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
,

as desired.

Now, if at least one of the bi’s are zero, suppose bi1 = bi2 = · · · = bik = 0. Then,(
n∑

i=1

aibi

)2

=

 ∑
1≤i≤n,bi 6=0

aibi

2

≤

 ∑
1≤i≤n,bi 6=0

a2i

 ∑
1≤i≤n,bi 6=0

b2i

 ≤ ( n∑
i=1

a2i

)(
n∑

i=1

b2i

)
.

�

5 Probabilistic Applications

Jensen’s inequality can be applied to solve many problems in probability and statistics. In fact, there is yet another form
of Jensen’s for random variables:

Definition 5.1. A random variable is a variable whose value depends on the outcome of a random phenomenon.
Formally, a random variable is a function from the sample space (the set of all possible outcomes) Ω to the real numbers
R. In the measure-theoretic definition, X is also required to be a measurable function.

Theorem 5.2 (Jensen’s inequality for a random variable). Let X be an integrable random variable. If g : R→ R is a
convex function such that g(X) is also integrable, we have

E[g(X)] ≥ g(E[X]),

with the inequality reversed if g is concave.

Proof. A function g is convex if for any point x0, the graph of g lies above its tangent at the point x0:

g(x) ≥ g(x0) + b(x− x0)for all x.

If we let x = X and x0 = E[X], the inequality becomes

g(X) ≥ g(E[X]) + b(X − E[X]).

Taking expected value of both sides, we have

E[g(X)] ≥ E[g(E[X])] + b(X − E[X]).

By linearity of expectation:
E[g(X)] ≥ g(E[X]) + b(E[X]− E[X]);

E[g(x)] ≥ g(E[X]).

�

Example. Suppose a strictly positive nonconstant random variable X has expected value E[X] = 1. What bound can
we find on the expected value of lnX?

We know that the function g(x) = lnx is concave, because its second derivative g′′(x) = − 1
x2 is always negative.

By Jensen’s inequality, we have
E[lnX] ≤ lnE[X] = ln 1 = 0.

Therefore, E[lnX] ≤ 0.
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